
DEFENSE INFORMATION INFRASTRUCTURE (DII)

COMMON OPERATING ENVIRONMENT (COE)

PROGRAMMER’S REFERENCE MANUAL SET

VOLUME IV

JMTK Version 3.0 Developers Manual - Part 2.
(Man Pages)

28 June 1996

Prepared for:

Defense Information Systems Agency

i

TABLE OF CONTENTS

TITLE PAGE

INTRODUCTION . 1

SECTION 1 SYMBOL MANIPULATION . 3

SECTION 2 DRAWABLE DISPLAY OBJECTS . 4

SECTION 3 DISPLAY SETTINGS . 6

SECTION 4 DISPLAY FEATURES . 7

SECTION 5 EDIT FEATURES . 8

SECTION 6 DATA TRANSFORMATIONS . 9

SECTION 7 WINDOWS . 10

SECTION 8 DISPLAY VIEW . 11

SECTION 9 SDB RETRIEVAL . 12

SECTION 10 DISPLAY UTILITIES . 13

SECTION 11 COORDINATE TRANSFORMATIONS . 14

SECTION 12 SYMBOL LIBRARY - ADD TO LIST . 15

SECTION 13 ANALYSIS . 16

SECTION 14 ERROR . 17

SECTION 15 DISPLAY QUERY . 18

SECTION 16 SYMBOL . 19

SECTION 17 WINDOWS - COMMUNICATION . 20

SECTION 18 MEMORY MANAGER . 21

ii

ALPHABETICAL LIST OF MAN PAGES . 22

GenAddFeatures . 23

GenAddProducts . 25

GenAttach . 27

GenChangedFeature . 28

GenChangedMap . 29

GenClip . 31

GenCoord . 37

GenDetach . 42

GenDrawingFeature . 43

GenDrawingMap . 45

GenError . 47

GenFlushAllRequests . 51

GenGetDisplay . 52

GenInit . 54

GenNextRequest . 59

GenPending . 60

GenRemoveFeatures . 61

GenRemoveProducts . 63

GenReserveFeature . 65

GenReserveMap . 70

GenSendError . 76

GenServerToSocket . 78

JMS_ConfigAOIGet . 79

JMS_ConfigAOISet . 80

JMS_DataPathnameGet . 81

JMS_DbConnect . 82

JMS_DbDisconnect . 84

JMS_DbListGet . 85

JMS_ErrorGet . 86

iii

JMS_InventoryGet . 87

JMS_MatrixGet . 88

JMS_MatrixPut . 90

JMS_MetadataGet . 92

JMV_LoadMap . 94

JMV_UnLoadMap . 94

MAbortAnimation . 95

MAbortMap . 96

MAddFeature . 98

MAddFeatures . 99

MAddInput . 101

MAddObject . 103

MAddPoint . 104

MAddProduct . 106

MAddProducts . 107

MAddTimeOut . 109

MAddVolume . 110

MApplyAttributes . 111

MApplyColor . 113

MApplyData . 114

MApplyFillOffset . 115

MApplyFillType . 116

MApplyFillWeight . 117

MApplyFont . 118

MApplyHiLite . 119

MApplyLineStyle . 120

MApplyLineType . 121

MApplyLineWidth . 123

MApplyPickability . 124

MApplyPixel . 126

iv

MApplyTemplate . 127

MApplyVisibility . 128

MChangeMap . 129

MChangeSymbol . 137

MChangeText . 138

MChannelToSocket . 139

MCloseChannel . 140

MCopyTemplate . 141

MCreateClass . 142

MCreateList . 144

MCreateObject . 146

MCreatePoly . 149

MCreateTemplate . 151

MCreateText . 153

MCreateWindow . 155

MDebug . 157

MDestroyList . 159

MDestroyObject . 160

MDestroyWindow . 161

MDrawArc . 162

MDrawBitmap . 164

MDrawBox . 166

MDrawChar . 168

MDrawChar16 . 170

MDrawCircle . 172

MDrawEllipse . 174

MDrawLine . 176

MDrawPolyLine . 178

MDrawPolygon . 180

MDrawRectangle . 182

v

MDrawSector . 184

MDrawSegment . 186

MDrawSlash . 188

MDrawSymbol . 190

MDrawText . 193

MDrawWeather . 195

MDrawWorld . 197

MError . 198

MExchangeObject . 205

MFlush . 207

MFlushAllEvents . 208

MGetProjectionData . 209

MGetSearchPath . 210

MGetServiceContext . 211

MGetXWindow . 212

MKillServer . 213

MListFeatures . 214

MListMaps . 219

MListObjects . 224

MMainLoop . 226

MMapWindow . 227

MMemory . 228

MModifyFeature . 230

MModifyFeatures . 232

MModifyObject . 235

MMoveObject . 239

MNextEvent . 241

MNoOp . 242

MOpenChannel . 243

MPending . 244

vi

MPixelsToPosition . 245

MPositionToPixels . 247

MPutBackEvent . 249

MQueryChannel . 250

MQueryFeatures . 252

MQueryMap . 254

MQueryObject . 257

MQueryObjectBBox . 259

MQueryWindow . 261

MQuickZoom . 262

MRecenterMap . 263

MReleaseFocus . 264

MReleaseWindow . 265

MReloadSearchPath . 266

MRemoveFeature . 267

MRemoveFeatures . 268

MRemoveInput . 269

MRemoveObject . 270

MRemoveProduct . 271

MRemoveProducts . 272

MRemoveTimeOut . 274

MRemoveVolume . 275

MReorderMaps . 276

MRequestFocus . 278

MRestoreCursor . 279

MScaleMap . 280

MSendEvent . 281

MSetAnimateKeys . 283

MSetAttributes . 285

MSetColor . 287

vii

MSetCursorAnnotation . 288

MSetCursorMode . 290

MSetData . 293

MSetEventHandler . 294

MSetEventMask . 295

MSetFillOffset . 296

MSetFillType . 297

MSetFillWeight . 299

MSetFont . 300

MSetHiLite . 301

MSetHiLiteColor . 302

MSetIntensity . 303

MSetLineStyle . 306

MSetLineType . 307

MSetLineWidth . 308

MSetMapBounds . 309

MSetMapColors . 310

MSetMapColorsByRGB . 312

MSetMapWidth . 314

MSetObjectData . 315

MSetPickability . 321

MSetPixel . 323

MSetPriority . 324

MSetSegment . 325

MSetSymbolSize . 326

MSetTemplate . 327

MSetVisibility . 329

MSync . 330

MUnMapWindow . 331

MUpdateClass . 332

viii

MUseNamedWindow . 333

MUseWindow . 335

MuAltitude . 337

MuConvert . 338

MuDistance . 343

MuError . 345

MuFont . 351

MuGeoPosn . 352

MuInit . 354

MuMgrPosn . 355

MuOption . 357

MuPosition . 360

MuReference . 362

MuUnits . 368

MuUtmPosn . 369

1

INTRODUCTION

This manual presents the JMTK APIs by functions performed. All information presented in this
manual supports the ANSI C language. JMV_MDrawArc is an example of an API used in the
JMTK Program. This naming format has been adopted by the JMTK Technical Working Group.
The first two characters of each API are JM for Joint Mapping. The third character identifies the
domain within JMTK according to the following scheme:

V = Visual

A = Analysis

S = Spatial Database Management

U = Utilities

I = Local Imaging Manipulations (future use)

G = Geographical Data Services (future use)

R = Security, Access, and Data Releasibility (future use)

The fourth character is an underscore _ . The fifth and all successive characters represent the API
name. All legacy API names used in this manual are arranged in a verb followed by noun
sequence. Example: MDrawArc. Future naming of APIs will transition to a noun-verb naming
scheme. This verb-noun scheme will be incorporated in a subsequent revision of this material.

A complete list of JMTK APIs presented in this manual is found in Appendix A. Also included in
the listing is the cross reference to the Software Requirements Specification (SRS) paragraph
which established the functional API requirement.

Each section contains a brief overview of the API functional grouping. A sample of code using
many of the APIs is in a separate volume. Each individual API is addressed with pertinent
information formatted in categories which display individual API information as follows:

1.0 Function - contains a non technical description of what the API does.

2.0 Description - contains the technical description describing the program process and any
associated steps in the process required to reach the functional goal.

3.0 Arguments - presents and details the actual logic process and parameters.

4.0 Returns - lists values returned upon completing the function.

2

5.0 Dependencies - lists dependent APIs.

6.0 Messages - lists displayed messages upon failure to execute.

7.0 Other APIs - lists other related APIs.

8.0 Related Documentation - describes any documents which may be related to the API.

3

SECTION 1
Symbol Manipulation

The APIs in this section are legacy code and are used for manipulating symbology and setting
attributes. The following list of APIs represents the Section 1, Symbol Manipulation, capabilities
for the JMTK:

API Name Req. Para.

JMV_MApplyAttributes 2.10
JMV_MApplyData 2.10
JMV_MApplyFillOffset 2.4.10
JMV_MApplyFillType 2.4.10
JMV_MApplyFillWeight 2.4.10
JMV_MApplyVisibility 2.10
JMV_MCopyTemplate 2.10
JMV_MModifyObject 2.10
JMV_MQueryObject 2.10
JMV_MQueryObjectBBox 2.10
JMV_MSetAttributes 2.10
JMV_MSetData 2.10
JMV_MSetFillOffset 2.4.10
JMV_MSetFillType 2.4.10
JMV_MSetFillWeight 2.4.10
JMV_MSetObjectData 2.10
JMV_MSetVisibility 2.10

4

SECTION 2
Drawable Display Objects

The APIs in this section are legacy code and are drawable display objects created using the
MDraw commands. These routines provide interface with the JMTK for creating graphical
objects. MDraw is the root command (verb) followed by an object name (noun) describing the
object to be drawn. The following display objects are included in this section:

Arc Poly
Box Polygon
Char Rectangle
Char16 Sector
Circle Segment
Ellipse Slash
Line Symbol
Polyline Text

These objects must have input from the user in order to determine the shape, size, or placement of
the object in the window.

In some cases a template must first be created in order to establish a place to install the required
input parameters.

The user is responsible for creation of a template of object attributes. This template is then
applied to the window in use, thus enabling creation of the initial object attributes. Since this
window is associated with the supplied template parameter, the window id is not part of the
MDraw object routine.

The following list of APIs represents the Section 2, Draw Objects, capabilities for the JMTK:

API Name Req. Para.

JMV_FormLine 2.10.1.12
JMV_FormPolygon 2.10.1.8
JMV_FormPolyLine 2.10.1.11
JMV_InitializePointSet 2.10.1.2
JMV_MChangeText 2.10.1.11
JMV_MCreatePoly 2.10.1.8
JMV_MCreateText 2.10.1.11
JMV_MDrawArc 2.10.1.4
JMV_MDrawBitmap 2.10.4.3
JMV_MDrawBox 2.10.1.6
JMV_MDrawChar 2.10.1.2
JMV_MDrawChar16 2.10.1.2
JMV_MDrawCircle 2.10.1.3

5

JMV_MDrawEllipse 2.10.1.5
JMV_MDrawLine 2.10.1.12
JMV_MDrawPolygon 2.10.1.8
JMV_MDrawPolyLine 2.10.1.1
JMV_MDrawRectangle 2.10.1.6
JMV_MDrawSector 2.10.1.2
JMV_MDrawSegment 2.10.1.10
JMV_MDrawSlash 2.10.1.12
JMV_MDrawSymbol 2.10.1.4
JMV_MDrawText 2.10.1.11
JMV_MSetSegment 2.10.1.1
JMV_SetPointInterpolation 1.5

6

 SECTION 3
Display Settings

The APIs in this section are legacy code. They are capable of displaying, in text fields and
formats, data associated with a symbol’s specified pixel offset or another georeferenced symbol
within a map layer. Two of the APIs specifically support and manage symbology libraries. The
graphic objects included are:

Text Size Color
Font Outlining
Style Thickness
Orientation Blinking
Brightness

The following list of APIs represents the Section 3, Display Settings, capabilities for the JMTK:

API Name Req. Para.

JMU_MuPointSizeToFontName 2.4
JMU_MuPointSizeToFontWidth 2.4
JMV_MApplyFont 2.10.10
JMV_MApplyHiLite 2.10.11
JMV_MApplyLineStyle 2.10.10
JMV_MApplyLineType 2.10.10
JMV_MApplyLineWidth 2.10.10
JMV_MApplyTemplate 2.10.10
JMV_MSetFont 2.10.10
JMV_MSetHiLite 2.10.11
JMV_MSetHiLiteColor 2.10.11.2
JMV_MSetLineStyle 2.10.10
JMV_MSetLineType 2.10.10
JMV_MSetLineWidth 2.10.10
JMV_MSetTemplate 2.10.10

7

SECTION 4
Display Features

The APIs in this section are legacy code and are capable of hiding or unhiding features from a
particular data source, symbols or map layers, and other pertinent data. The following list of
APIs represents the Section 4, Display Features, capabilities for the JMTK:

API Name Req. Para.

MU_MuFeatureToAcronym util
JMU_MuFeatureToString util
JMV_AppendLine 2.10.6
JMV_AppendPolygon 2.10.6
JMV_AppendPolyLine 2.10.6
JMV_MAddFeature 2.10.8.3
JMV_MAddFeatures 2.10.8.4
JMV_MAddPoint 2.10.8.3
JMV_MApplyColor 2.10.7.9
JMV_MApplyPickability 2.10.8
JMV_MApplyPixel 2.10.7.9
JMV_MCreateObject 2.10.6
JMV_MCreateTemplate 2.10.8.3
JMV_MDrawWeather 2.10.6
JMV_MSetColor 2.10.7.9
JMV_MSetIntensity 2.10.7.9
JMV_MSetIntensityDetail 2.10.7.9
JMV_MSetIntensityModels 2.10.7.9
JMV_MSetMapColors 2.10.7.9
JMV_MSetMapColorsByRGB 2.10.7.9
JMV_MSetPickability 2.10.8
JMV_MSetPixel 2.10.7.9
JMV_MUpdateClass 2.10.8

8

SECTION 5
Edit Features

The APIs in this section are legacy code and are capable of moving an object from a window,
modifying one or a list of feature attributes on a map, and removing objects from a list or map
products and features from the Draw Module or geographic display. The following list of APIs
represents the Section 5, Edit Features, capabilities for the JMTK:

API Name Req. Para.

JMV_ClearPointSet 2.11.1
JMV_FreePointSet 2.11.1
JMV_GenRemoveFeatures 2.11.1.1
JMV_GenRemoveProducts 2.11.1.1
JMV_MModifyFeature 2.11.1.7
JMV_MModifyFeatures 2.11.1.7
JMV_MMoveObject 2.10.7.1
JMV_MRemoveFeature 2.11.1
JMV_MRemoveFeatures 2.11.1
JMV_MRemoveObject 2.11.1.1
JMV_MRemoveProduct 2.11.1.1
JMV_MRemoveProducts 2.11.1.1

9

SECTION 6
Data Transformations

The APIs in this section are legacy code and are capable of converting a standard set of unit
conversions. Some retrieve the projection data structure in use for the window coordinate system
and others actually convert geodetic coordinates (lat/long) to point-to-pixel coordinates and vice
versa. The following list of APIs represents the Section 6, Data Transformations, capabilities for
the JMTK:

API Name Req. Para.

JMV_ComputeScales 3.6
JMV_DegreesToRadians 2.2.2
JMV_FeetToMeters 2.2
JMV_KilometersToMiles 2.2
JMV_KilometersToNautical 2.2
JMV_MetersToFeet 2.2
JMV_MetersToNautical 2.2
JMV_MGetProjectionData 3.6
JMV_MilesToKilometers 2.2
JMV_MilesToMeters 2.2
JMV_MilesToNautical 2.2
JMV_MPixelsToPosition 2.2.12
JMV_MPositionToPixels 2.2.18
JMV_NauticalToDegrees 2.2
JMV_NauticalToKilometers 2.2
JMV_NauticalToMeters 2.2
JMV_NauticalToMiles 2.2
JMV_PixelsToPosition 2.2.126
JMV_PositionToPixels 2.2.18
JMV_RadiansToDegrees 2.2.11

10

SECTION 7
Windows

The APIs in this section are legacy code and are capable of providing a consistent interface to the
Chart Manager and to various Windows from disparate Chart Clients. The different APIs
perform tasks such as mapping a window to the screen and destroying a window in the chart
manager. The following list of APIs represents the Section 7, Windows, capabilities for the
JMTK:

API Name Req. Para.

JMU_MuInitialize util
JMU_MuTerminate util
JMV_GenReserveFeature 3.1
JMV_GenReserveMap util
JMV_MAbortMap 2.3
JMV_MAddObject 2.3.5
JMV_MAddProduct 2.3.5
JMV_MAddProducts 2.3.5
JMV_MChangeMap 2.3
JMV_MCreateClass 2.3.5
JMV_MCreateList 2.3.5
JMV_MCreateWindow 2.3.1
JMV_MDestroyList 2.3.1.3
JMV_MDestroyObject 2.3.1.3
JMV_MDestroyWindow 2.3.1.3
JMV_MDrawWorld 2.3.1.6
JMV_MExchangeObject 2.3.5
JMV_MGetXWindow 2.3
JMV_MMapWindow 2.3.1.6
JMV_MReleaseWindow 2.3.1.3
JMV_MReorderMaps 2.3.5.3
JMV_MResetIntensity 2.3.8.2
JMV_MUnMapWindow 2.3.1.4
JMV_MUseNamedWindow 2.3.1
JMV_MUseWindow 2.3.1

11

SECTION 8
Display View

The APIs in this section are legacy code and are capable of displaying various views of the current
map and its display boundaries and width along with changing the mode of the cursor. Some of
these functions include: quickly zooming the current map view, and recentering and/or rescaling a
map. The following list of APIs represent the Section 8, Display View, capabilities for the JMTK:

API Name Req. Para.

JMV_MQuickZoom 2.8.1
JMV_MRecenterMap 2.8.3
JMV_MScaleMap 2.8.1
JMV_MSetCursorMode 2.8
JMV_MSetMapBounds 2.8.2
JMV_MSetMapWidth 2.8.2

12

SECTION 9
SDB Retrieval

The APIs in this section represent new and legacy code. The new APIs are marked. They are
capable of various procedures regarding the Spatial Data Base. Some APIs specifically address
accessing the SDB data and terminating previous connections. Others establish unique
connections and define geographic AOIs (areas of interest). Many of these APIs perform
retrieving functions and one saves matrix data in a SDB. The following list of APIs represents the
Section 9, Spatial Data Base Retrieval, capabilities for the JMTK:

API Name Req. Para. New APIs

JMS_ConfigAOIGet new
JMS_ConfigAOISet new
JMS_DataPathnameGet new
JMS_DbConnect new
JMS_DbDisconnect new
JMS_DbListGet new
JMS_ErrorGet new
JMS_InventoryGet 3.4.9 new
JMS_MatrixGet new
JMS_MatrixPut new
JMS_MetadataGet 3.3 new
JMV_MAddVolume 3.4.9
JMV_MListMaps 3.4.9
JMV_LoadMap new
JMV_MReloadSearchPath 3.4.9
JMV_MRemoveVolume 3.4.9
JMV_UnLoadMap new

13

SECTION 10
Display Utilities

The APIs in this section are legacy code and are capable of the following functions:

C Abort the animation of an object
C Add an input source to the context
C Register a time-out with the service manager
C Flush the output buffer
C Flush the event queues for all channels
C Get the next event from the event queue
C Return the number of pending Map events
C Push an event back on the input queue
C Release point select focus
C Remove an input source from the Chart Manager
C Remove an interval timer
C Request map focus
C Change cursor to the normal cursor
C Send a map event to other users of a window
C Set the control keys used during animation

The following list of APIs represents the Section 10, Display Utilities, capabilities for the JMTK:

API Name Req. Para.

JMV_MAbortAnimation util
JMV_MAddInput util
JMV_MAddTimeOut util
JMV_MFlush util
JMV_MFlushAllEvents util
JMV_MNextEvent util
JMV_MPending util
JMV_MPutBackEvent util
JMV_MReleaseFocus util
JMV_MRemoveInput util
JMV_MRemoveTimeOut util
JMV_MRequestFocus util
JMV_MRestoreCursor util
JMV_MSendEvent util
JMV_MSetAnimateKeys util

14

SECTION 11
Coordinate Transformations

The APIs in this section are legacy code and are discussed in the following general man pages.

The MuConvert utilities provide a set of routines for converting among three map coordinate
systems: Geodetic (GEO), Universal Transverse Mercator (UTM), and Military Grid Reference
(MGR). The MuGeoPosn routines and the MuPosition routines which provide conversions from
geodetic values to a printable string, and vice-versa. The MuMgrPosn routines provide
conversions from MGR COORD records to a printable string, and vice-versa. The MuUtmPosn
routines provide conversions from UTM values to a printable string, and vice-versa. These API
man pages have been included in this section.

The following list of APIs represents the Section 11, Coordinate Transformations, capabilities for
the JMTK:

API Name Req. Para.

JMU_MuGeoMgr 2.2
JMU_MuGeoPosition 1.3.5.2
JMU_MuGeoToString 2.2.4
JMU_MuGeoUtm 2.2.6
JMU_MuMgrGeo 2.2
JMU_MuMgrToString 2.2
JMU_MuMgrUtm 2.2
JMU_MuPositionToString 2.2
JMU_MuStringToPosition util
JMU_MuUtmGeo 2.2.10.
JMU_MuUtmMgr 2.2
JMU_MuUtmToString 2.2
JMU_MuValidGeo 2.2
JMU_MuValidMgr 2.2
JMU_MuValidUtm 2.2

15

SECTION 12
Symbol Library - Add to List

The APIs in this section are legacy code and are discussed in the following general man pages.

MuReference includes Chart Manager category reference routines. The MapFeatureAttributes
(MFeatAtts) structure is used to describe the list of features which are drawn onto a map
window. These API man pages are included in this section.

The following list of APIs represents the Section 12, Symbol Library - Add to List, capabilities for
the JMTK:

API Name Req. Para.

JMU_MuAddFeature 2.3.6.4
JMU_MuAddProjection 3.4
JMU_MuAddSubFeature 2.10
JMU_MuAddSubType 2.10.8.3
JMU_MuAddType 3.4
JMU_MuListFeatures 3.10.15
JMU_MuListProjections 3.10.11
JMU_MuListSubFeatures 3.10.40
JMU_MuListSubTypes 3.10.35
JMU_MuListTypes 3.10.35
JMU_MListFeatures

16

SECTION 13
Analysis

The APIs in this section are revised legacy code and are not available as of 10 April 1996.

The following list of APIs represents the Section 13, Analysis, capabilities for the JMTK:

API Name Req. Para.

JMA_FanAnalyze 1.2
JMA_ProfileAnalyze 1.3

17

SECTION 14
Error

The APIs in this section are legacy code and are discussed in the following general man pages.

MuError API includes the Chart Manager standardized error and warning utilities. GenError
API includes the Draw Module error handling routines. The GenSendError routine sends an
error to the Chart Manager.

The following list of APIs represents the Section 14, Error, capabilities for the JMTK:

API Name Req. Para.

JMU_MuAppError util
JMU_MuAppWarning util
JMU_MuErrorHandler util
JMU_MuErrorMsg util
JMU_MuSetErrClass util
JMU_MuSetErrorList util
JMU_MuSysError util
JMU_MuSysWarning util
JMV_GenErrorToString util
JMV_GenRequestCodeToString 3.1
JMV_GenResetErrorHandler util
JMV_GenResetIOErrorHandler util
JMV_GenSendError util
JMV_GenSetErrorHandler util
JMV_GenSetIOErrorHandler util
JMV_MErrorToString util
JMV_MMajorCodeToString util
JMV_MMinorCodeToString util
JMV_MResetErrorHandler util
JMV_MResetIOErrorHandler util
JMV_MSetErrorHandler util
JMV_MSetIOErrorHandler util

18

SECTION 15
Display Query

The APIs in this section are legacy code and are capable of the following functions:

C Chart Manager distance utility routines.
C List the features available on the Chart Manager.
C Retrieve display list of features for given geographic display.
C Get current geographic display attributes for a given map window.
C Get information about a Map Window.
C Set the annotation for the cursor, when in normal cursor mode.

The following list of APIs represents the Section 15, Display Query, capabilities for the JMTK:

API Name Req. Para.

JMU_MuBearing 3.10.81
JMU_MuDistance 3.10.81
JMU_MuGetPosition 1.3.5.2
JMU_MuGetRangeBearing 2.15.1.6
JMU_MuTargetAltitude 3.10.65
JMU_MuTargetMaxRange 3.10.65
JMV_MuListFeatures 3.10.15
JMV_MQueryFeatures 3.10.15
JMV_MQueryMap 3.10.9
JMV_MQueryWindow 3.10.11
JMV_MSetCursorAnnotation 2.15

19

SECTION 16
Symbol

The APIs in this section are legacy code and consist mainly of Chart Manager category reference
routines and option parsing routines. A smaller portion of the APIs in this section include the
following Chart Manager routines: geo reference position string utility routines, MGR position
string utility routines, and Chart Manager UTM position string utility routines.

The following list of APIs represents the Section 16, Symbol, capabilities for the JMTK:

API Name Req. Para.

JMU_MuOption
JMU_MuUtmPosn

JMU_MuProjectionToAcronym util
JMU_MuProjectionToString util
JMU_MuQualGetOption util
JMU_MuQualGetPgmName util
JMU_MuQualUsage util
JMU_MuStringToFeature util
JMU_MuStringToGeo util
JMU_MuStringToMgr util
JMU_MuStringToProjection util
JMU_MuStringToSubFeature util
JMU_MuStringToSubType util
JMU_MuStringToType util
JMU_MuStringToUtm util
JMU_MuSubFeatureToAcronym util
JMU_MuSubFeatureToString util
JMU_MuSubTypeToAcronym util
JMU_MuSubTypeToString util
JMU_MuTypeToAcronym util
JMU_MuTypeToString util

20

SECTION 17
Windows - Communication

The APIs in this section are legacy code. These APIs perform functions such as opening and
closing a communications channel to the Chart Manager, notifying Chart Manager of various
Draw Module activities, flushing the Draw Module request queue, and shutting down the Chart
Manager.

The following list of APIs represents the Section 17, Windows - Communication, capabilities for
the JMTK:

API Name Req. Para.

JMV_GenAddFeatures 2.10.18.3
JMV_GenAddProducts 2.3.5
JMV_GenAttach 2.3
JMV_GenChangedFeature 2.3.6.4
JMV_GenChangedMap 2.3
JMV_GenDetach 2.3
JMV_GenDrawingFeature util
JMV_GenDrawingMap util
JMV_GenFlushAllRequests 2.3
JMV_GenGetDisplay 2.3
JMV_GenInitialize 2.3
JMV_GenNextRequest util
JMV_GenPending util
JMV_GenServerToSocket util
JMV_MChannelToSocket util
JMV_MCloseChannel util
JMV_MKillServer util
JMV_MMainLoop util
JMV_MNoOp util
JMV_MOpenChannel util
JMV_MQueryChannel util
JMV_MSetEventHandler util
JMV_MSetEventMask 2.24
JMV_MSync util

21

SECTION 18
Memory Manager

The APIs in this section are legacy code and consist mainly of Chart Manager memory allocation
utilities and object search utilities.

The following list of APIs represents the Section 18, Memory Manager, capabilities for
the JMTK:

API Name Req. Para.

JMV_MAlloc+ util
JMV_MAllocVerify util
JMV_MDebug util
JMV_MFree util
JMV_MGetSearchPath util
JMV_MReAlloc util

22

Alphabetical List of Man Pages

23

GenAddFeatures

FUNCTION
Specifiy map features which are of interest to this Draw Module.

SYNTAX
C Interface

void GenAddFeatures(server, products, numproducts) ServerId server;
FeatureProduct *products;
int numproducts;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

products Describes a list of feature products which are of interest to this Draw Module.

numproducts
The number of products described in products.

DESCRIPTION
The GenAddFeatures() call specifies feature products that are of interest to this Draw
Module. Specifying products of interest guarantees that the Draw Module will receive a
FeatureVerifyRequest for each map file matching any of the requested products. The
Draw Module is not obligated to support all products which it specifies in the product list.
Rather, this list simply limits the number of FeatureVer ifyRequests sent to it by the Chart
Manager.

The value AnyFeature serves as a wildcard and is supported with any of the fields in the
FeatureProduct structure, including the FeatureType field. The FeatureType, and
FeatureSubType fields are the same fields used in the Map FeatureAttributes structure.

After sending this response to the Chart Manager, the Draw Module should expect a
FeatureVerifyRequest for each feature product in the system which are in the list. The
Draw Module can make this call at any time, adding module support for other products at
a subsequent time. The GenRemo veFeatures() call is used for removing feature products
of interest.

ERRORS
BadServer

An invalid server id was used.

BadValueError
An invalid product specification was sent to Chart Manager. The specified value
for FeatureType or FeatureSubType is/are not supported by the Chart Manager.

24

SEE ALSO
GenAttach(3Gen), GenAddProducts(3Gen), GenRemoveFeatures(3Gen),
GenFeatVerify(3Gen), MuReference(3Mu)

25

GenAddProducts

FUNCTION
Specify map products which are of interest to this Draw Module.

SYNTAX
C Interface

void GenAddProducts(server, products, numproducts) ServerId server;
MapProduct *products;
int numproducts;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

products Describes a list of map products which are of interest to this Draw Module.

numproducts
The number of products described in products.

DESCRIPTION
The GenAddProducts() call specifies map products that are of interest to this Draw
Module. Specifying products of interest guarantees that the Draw Module will receive a
Map VerifyRequest for each map file matching any of the requested products. The Draw
Module is not obligated to support all products which it specifies in the product list.
Rather, this list simply limits the number of MapVerifyRe quests sent to it by the Chart
Manager.

The value AnyMap serves as a wildcard and is supported with any of the fields in the
MapProduct structure, including the MapType field. The MapType, and MapSubType
fields are the same fields used in the MapChangeAttributes structure.

After sending this response to the Chart Manager, the Draw Module should expect
MapVerifyRequests for all map products in the system which are in the list. The Draw
Module can make this call at any time, adding module support for other products at a
subsequent time. The GenRemoveProducts() call is used for removing products of
interest.

ERRORS
BadServer

An invalid server id was used.

BadValueError
An invalid product specification was sent to Chart Manager. The specified value
for MapType or MapSubType is/are not supported by the Chart Manager.

26

SEE ALSO
GenAttach(3Gen), GenAddFeatures(3Gen), GenRemoveProducts(3Gen),
GenMapVerify(3Gen), MuReference(3Mu)

27

GenAttach

FUNCTION
Attachs a Draw Module process to a Chart

Manager.
SYNTAX

C Interface
ServerId GenAttach(host)

char *host;
ARGUMENTS

host The name of the host where Chart Manager is exe-
cuting.

DESCRIPTION
The GenAttach() routine attaches the Draw Module process to the Chart Manager on the
specified host. A ServerId is returned and is used to reference the connection with the
Chart Manager. Almost all calls made to the library require a ServerId as a parameter. If
the library is unable to connect to the Chart Manager, then InvalidServerId is returned.

If the host field is a NULL pointer, then the environment variable MapHostName is
checked for, and if it is defined then its value is used as the name of the host to connect to.
If MapHostName is not a defined environment variable, then the Gen library attempts to
connect to the local host.

RETURN
Upon successful connection, the ServerId of the connection is returned; otherwise
InvalidServerId (-1) is returned.

ERRORS
AlreadyConnected

The Draw Module already has an open connection to this Chart Manager via a
previous GenAttach() call. No more than one connection per Chart Manager is
allowed for each Draw Module.

OutOfMemory
Unable to allocate space for this Chart Manager connection. No memory left.

SEE ALSO
GenDetach(3Gen), GenEnviron(3Gen), setenv(1)

28

GenChangedFeature

FUNCTION
Notify Chart Manager that the draw module has finished rendering a feature.

SYNTAX
C Interface

void GenChangedFeature(server)
ServerId server;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

DESCRIPTION
The GenChangedFeature() call notifies the Chart Manager that the feature which the draw
module has been currently rendering has completed. This call should be sent by a Draw
Module ONLY IF the module has just received a FeatureDrawRe quest. Because of this,
the implied parameters in the call reference the draw request currently being worked on.

When a Draw Module receives a FeatureDrawRequest, the module can either choose to
ignore it, or render the feature as requested. If the latter action is done, the module needs
to notify the Chart Manager as to its progress (via periodic calls to GenDrawingFeature()
) and must indicate when the rendering has completed via a call to GenChangedFeature().
Calls to this routine at times other than when the Draw Module is currently rendering a
feature result in a BadTim ing error. If, during a FeatureDrawRequest, a call to this
routine is NOT made, then the Draw Module will unconditionally send a
FeatureNotAvailable error back to the Chart Manager.

ERRORS
BadServer

An invalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenChangedFeature() should
be called only after a FeatureDrawRequest has been received.

SEE ALSO
GenAttach(3Gen), GenFeatDraw(3Gen), GenRequest(3Gen),
MAddFeature(3Map)

29

GenChangedMap

FUNCTION
Notify Chart Manager that the Draw Module has completed the rendering of a map.

SYNTAX
C Interface

void GenChangedMap(server)
ServerId server;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

DESCRIPTION
The GenChangedMap() is used by a Draw Module to signify that a map which it is
currently rendering has completed. This information is needed by the Chart Manager so
that it can coordinate the map draw requests, and handle the completion of a client draw
request. This call should be sent by a Draw Module ONLY IF the module has previously
received a MapDrawRequest, and the draw module has been working on the rendering of
the map request. Because of this, the implied parameters in the call reference the draw
request currently being worked on.

When a Draw Module receives a MapDrawRequest, the module can either choose to
ignore it, or redraw the map. If the latter choice is taken, the draw module which is
rendering the map should send periodic updates to the Chart Manager as to the progress
being made using the GenDrawingMap() call. The Chart Manager must then be notified
when the rendering completes using the GenChangedMap() call. Calls to this routine at
other times result in an error. If during a Map DrawRequest a call to this routine is NOT
made, then the Draw Module will unconditionally send a MapNotFound error back to the
Chart Manager.

Draw Modules which are rendering a feature use the similar calling sequence of
GenDrawingFeature() and GenChanged Feature().

ERRORS
BadServer

An invalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenChangedMap() should be
called only after a Map DrawRequest has been received.

SEE ALSO

30

GenAttach(3Gen), GenChangedFeature(3Gen), GenMapDraw(3Gen),
GenRequest(3Gen), MChangeMap(3Map)

31

GenClip

FUNCTION
Line/Polygon clipping and conversion routines.

SYNTAX
C Interface

MapStatus FormLine (conv, pt1, pt2, gcrl,
set)

ProjectionData *conv;
MapPoint *pt1;
MapPoint *pt2;
int gcrl;
PointSet *set;

MapStatus AppendLine (conv, pt1, pt2, gcrl,
set)

ProjectionData *conv;
MapPoint *pt1;
MapPoint *pt2;
int gcrl;
PointSet *set;

MapStatus FormPolyLine (conv, pts, npts, gcrl,
set)

ProjectionData *conv;
MapPoint *pts;
int npts;
int gcrl;
PointSet *set;

MapStatus AppendPolyLine (conv, pts, npts, gcrl,
set)

ProjectionData *conv;
MapPoint *pts;
int npts;
int gcrl;
PointSet *set;

MapStatus FormPolygon (conv, pts, npts, gcrl,
set)

ProjectionData *conv;
MapPoint *pts;
int npts;
int gcrl;

32

PointSet *set;

MapStatus AppendPolygon (conv, pts, npts, gcrl,
set)

ProjectionData *conv;
MapPoint *pts;
int npts;
int gcrl;
PointSet *set;

void InitializePointSet (set)
PointSet *set;

void ClearPointSet (set)
PointSet *set;

void FreePointSet (set)
PointSet *set;

int SetPointInterpolation (value)
int value;

ARGUMENTS
conv A projection data structure. Usually the struc-

ture which is returned by a MapDrawRequest or FeatureDrawRequest.

pt1 A Geodetic point on the world. Value is in radi-
ans.

pt2 A Geodetic point on the world. Value is in radi-
ans.

pts A list of geodetic points on the world. All
values are in radians.

npts The number of points in the list pts.

gcrl Line description type. Two values are supported:
RhumbLine will connect line segments using bearing/range. GreatCircle
will connect line segments using great circles.

set A PointSet structure. This structure contains one
or more lists of pixel points which describe the geometric entity after
calculating, interpolating, clipping, and converting.

DESCRIPTION
Chart provides a number of routines to aid Draw Modules in rendering polygons,
polylines, and lines which are geographically described using geodetic coordinates.

33

All of these routines require some sort of geodetic input coordinates, described using one
or more MapPoint structures, a coordinate conversion structure, described by the
ProjectionData structure, a line type value (usually set to RhumbLine, however
GreatCircle is also supported), and an initialized PointSet structure, described below.

The most basic of the routines is FormLine(), which connects two geodetic points with an
interpolated set of points. The

returned PointSet structure contains one or more arrays of XPoint records, which can be
used as input to XDrawLines(3X11). The returned set of line segments is interpolated
based on the following criterea:

(1). The line connection algorithm (rhumbline or great circle).
(2). The projection (some projections project lines as curves
(3). The current interpolation value as specified in the last call to
SetPointInterpolation().

The geodetic line will be broken into more than one set of line segments if a geodetic
boundary is crossed. Boundary crossing are projection dependent. The returned PointSet
contains information as to the number of line segment sets are calculated.

Contiguous geodetic line segments can be connected by calling FormLine(), followed by
successive calls to Append Line(). A similar functionality exists for connecting multiple
geodetic line segments by using the FormPolyLine() routine. The AppendPolyLine()
routine acts like FormPoly Line(). However, the output line segments are appended to
the input PointSet.

The FormPolygon() routine calculates one or more polygons which will render the input
polygon describe by the geodetic set of points in the pts list. The first and last points in
this list are automatically closed if the two point's values are not equal. Polygons which
cross viewing boundaries will be broken up, and connected as necessary. The AppendPo
lygon() acts like FormPolygon(), but the output points are appended to the current
PointSet.

The Form...() routines will automatically clear up the PointSet structure prior to
calculating the output segments using the ClearPointSet() call. The Append...() routines,
on the other hand, do not clear the PointSet structure.

The call ClearPointSet() reinitializes a PointSet set structure WITHOUT freeing up
already allocated memory. This is a more efficient approach when numerous calculations
are being performed (such as drawing a lot of polygons in VectorDraw), because memory
doesn't need to be constantly reallocated and freed.

FreePointSet() should always be called when the Draw Module no longer has a need for
the information in the PointSet. This both clears the PointSet structure and frees any
memory which it has previously allocated.

34

InitializePointSet() MUST be called prior to using a PointSet in any other routine! This is
extremely important. Otherwise, unexpected results can occur.

SetPointInterpolation() can be called at any time to set a new interpolation value. The
default value is currently 20, which means that as many as 20 points will be calculated for
EACH input geodetic segment. If your draw module is already doing interpolation then
set this value to 0.

Points which are so close together that their pixel equivalent values are the same are
thrown out prior to conversion. This is dependent of course on the current viewing scale.

RETURN
The Form...() and Append...() routines return a value of NoError if the input values are
valid and if the output PointSet is successfully created. An error value as described in the
ERRORS section will be returned otherwise.

The SetPointInterpolation() routine returns the previous interpolation value. This allows
the caller to set the interpolation back to the previous value when done.

STRUCTURES
C Interface

typedef struct _MapPoint {
FLOAT lat;
FLOAT lon;
FLOAT alt;

} MapPoint;

typedef struct {
XPoint *points;
short npoints;
Boolean validpt;

} IntPointSet;
/*Note: ignore other fields in this structure*/

typedef struct {
IntPointSet *sets;
short nsets;

} PointSet;
/*Note: ignore other fields in this structure*/

The PointSet structure describes the set of points which will render the given geometric
figure. The fields in this structure are as follows:

sets

35

A set of IntPointSet structures. Each of these structures contains a set of (x,y)
pixel values for rendering part of the geometric figure. The IntPointSet structure
is described in more detail below.

nsets
The number of sets described above. This specifies the MAXIMUM number of
pixel sets which will describe the geometric figure. Note that each set must still be
checked for validity prior to rendering.

The IntPointSet structure describes a set of pixels used for rendering at least part of the
geometric figure. The fields in this structure which are of use to Draw Modules are as
follows:

points
A set of pixel values which can be used in a XDrawLines(3X11) or
XFillPolygon(3X11) call, as appropriate.

npoints
The number of points specified in points. Draw Modules should check to insure
that this is a reasonable value (eg. greater than 1).

validpt
This value will be set to False if the pixel values are invalid, True otherwise. Draw
Modules should check to see that this value is True prior to using the points for
rendering.

ERRORS
Errors are returned in a MapStatus integer. Valid errors

include:

BadValueError
An invalid point was specified, or else the npts field is unreasonable (less than or
equal to 1).

OutOfMemory
Unable to allocate sufficient memory to perform calculations.

PointsTooClose
May be returned by FormLine() or AppendLine(). Indicates that no points were
produced because the too points are sufficiently close to be treated as simply

one point on the given view. This provides dynamic clipping of lines, polygons,
etc.

36

NOTES
(1). All geodetic coordinates are in radians, not degrees.

(2). When using XFillPolygon(3X11), it is probably better to specify Complex.

(3). The mode to use for either XFillPolygon(3X11) or

XDrawLines(3X11) should be CoordModeOrigin.

SEE ALSO
GenCoord(3Gen), GenFeatDraw(3Gen), GenMapDraw(3Gen),
MGetProjectionData(3Map), MPositionToPixels(3C), MPixelsToPosition(3C)
XDrawLines(3X11), XFillPolygon(3X11)

37

GenCoord

FUNCTION
Coordinate conversion routines.

SYNTAX
C Interface

Boolean PositionToPixels (conv, lon, lat, x, y) ProjectionData *conv;
FLOAT *lon;
FLOAT *lat;
short **x;
short **y;

Boolean PixelsToPosition (conv, x, y, lon, lat) ProjectionData *conv;
int x;
int y;
FLOAT *lon;
FLOAT *lat;

Boolean ComputeScales (conv, lon1, lat1, p1 x, p1 y, lon2, lat2,p2 x, p2 y)
ProjectionData *conv;
FLOAT lon1;
FLOAT lat1;
FLOAT p1 x;
FLOAT p1 y;
FLOAT lon2;
FLOAT lat2;
FLOAT p2 x;
FLOAT p2 x;

ARGUMENTS
conv A pointer to a ProjectionData structure. Usually

the structure which is returned by a MapDrawRe quest or
FeatureDrawRequest. As an input to Com puteScales(), certain elements
in the conv record must be filled in prior to calling ComputeS cales().
Upon return, conv contains the filled in values necessary for conversion
between geodetic and pixel coordinate systems. The returned structure is
used only as an input by the PositionTo Pixel(), and PixelToPosition()
calls to accompilish this.

lon
lat Longitude and latitude (in radians) of a point.
x
y X- and y- coordinate (in window coordinates) of a

point.

lon1

38

lat1 The 1st cross reference point (longitude/latitude)
for scaling, in radians.

p1 x

p1 y The 1st cross reference point (x coordinate, y
coordinate), for scaling, in window coordinates.

lon2

lat2 The 2nd cross reference point (longitude/latitude)
for scaling, in radians.

p2 x

p2 y The 2nd cross reference point (x coordinate, y
coordinate), for scaling, in window coordinates.

DESCRIPTION
The PositionToPixels() function converts a geodetic point on the geographic display to its
pixel value. If the input value is not visible on the geographic display image, then False is
returned; otherwise True is returned.

The PixelsToPosition() function converts a pixel point on the geographic display to its
geodetic value. If the specified pixel position does not correspond to a point on the
viewable map surface, then False is returned; otherwise True is returned. The current
projection and scale are taken into account when converting the pixel location to a geo-
detic coordinate. The pixel locations are mapped to the geographic image starting from
the upper left hand corner of the image. The point (0,0) represents the upper left hand
corner of the pixmap, and (width, height) represents the lower right hand corner. Negative
pixel values represent points above and to the left of the upper left hand corner, and may
be valid provided that the viewable map space extends beyond the corners of the window.

The ComputeScales() function calculates the scaling factors necessary to perform future
conversions between geodetic points and pixel points. Normal Draw Modules and Chart
Clients do NOT need to use this function. Chart Clients can instead use the
MPositionToPixels(3C) and MPixelsToPosition(3C) calls.

Pixel coordinate systems are rectangular grids of integer values. A unit of measure in
either direction corresponds to so much change in latitude and/or longitude. The unit
change is almost always non-linear, depending on both the

projection and earth model currently in use.
The ProjectionData structure is a structure used for converting between the geodetic and
pixel coordinate systems. Certain fields in this structure must be filled in prior to calling
ComputeScales().

39

RETURN
For the PositionToPixels() routine, the value True is returned when a valid conversion
takes place, and the geodetic coordinate is viewable. The value False is returned when
either the input point is not valid, or else the conversion fails, or else the geodetic point is
not visible on the geographic display. If the call fails, then the pixel points are set to 0 as a
precaution.

For the PixelsToPosition() routine, the value True is returned when a valid conversion
takes place, and the pixel location lies on the world. The value False is returned when the
pixel location does not lie on the world, or is otherwise not convertible. In the latter case,
the geodetic coordinate is set to infinity as a precaution.

For the ComputeScales() routine, the value True is returned if the call succeeds, and False
is returned if the call fails. The ProjectionData structure should be used only if the call
succeeds.

STRUCTURES
C Interface

typedef struct {
Boolean whole_world;
Boolean crosses_pole;
ProjectionType projection;
EarthModel system;
FLOAT pixel_x_origin;
FLOAT pixel_y_origin;
int width;
int height;
FLOAT dc_x_origin;
FLOAT dc_y_origin;
FLOAT lng_origin;
FLOAT lat_origin;
FLOAT sp1;
FLOAT sp2;
FLOAT x_scale;
FLOAT y_scale;
FLOAT factor;
FLOAT dc_x_max;
FLOAT dc_y_max;

} ProjectionData;

The ProjectionData structure describes the coordinate transformation between geodetic
and pixel coordinate systems. Certain fields within this structure must be filled in PRIOR
to calling ComputeScales(). Other fields are filled in by the ComputeScales() routine.
The other fields in the ProjectionData structure are for internal use only. The fields which
need to be filled in by the Draw Module or Chart Client are:

40

whole_world
Set this field to True only if the geodetic coordinate system covers the entire
world. Set this field to False otherwise.

projection
Set this field to the projection being used in the geodetic coordinate system. Valid
projection values are found on the MProjection(3Map) man page.

system
Set this field to the Earth Model being used. This field must be set to one of the
following values: Spherical or Elliptical.

width
Set this field to be the width of the pixel coordinate system. For example, the
Window coordinate system sets this value to the window width. The pixmap
coordinate system sets this value to the pixmap width.

height
Set this field to be the height of the pixel coordinate system. For example, the
Window coordinate system sets this value to the window height. The pixmap
coordinate system sets this value to the pixmap height.

lng_origin

Set this field to the longitude point which corresponds to the center point of the
pixel coordinate system.

lat_origin
Set this field to the latitude point which corresponds to the center point of the
pixel coordinate system.

sp1 sp2
These values are the standard parallels being used within the particular projection.
Depending on the projection, none, one, or both of these values are used in the
projection calculations.

NOTES
(1). All geodetic coordinates are in radians, not degrees. (2). These routines are
accessible to Chart Clients as well, but are documented here because their usage is more
common to Draw Modules. They do not require any interaction with the Chart Manager.

SEE ALSO
GenFeatDraw(3Gen) GenMapDraw(3Gen), MGetProjectionData(3Map),
MPositionToPixels(3Map), MPixelsToPosition(3Map)

41

GenDetach

FUNCTION
Close a communication channel to the Chart

Manager.
SYNTAX

C Interface
void GenDetach(server)

ServerId server;
ARGUMENTS

server The connection to the Chart Manager; returned by
GenAttach().

DESCRIPTION
GenDetach() closes the communication channel between the Draw Module and the Chart
Manager specified by server. The Chart Manager clears any products supported by this
map generator client from the server's product list, and places them back on the
unsupported product list.

ERRORS
BadServer

The server id is invalid.

SEE ALSO
GenAttach(3Gen), GenRemoveProducts(3Gen)

42

GenDrawingFeature

FUNCTION
Notify Chart Manager that a feature is being drawn.

SYNTAX
C Interface

void GenDrawingFeature(server, percent drawn, abort) ServerId server;
int percent drawn;

Boolean *abort;
ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

percent drawn
The percentage of the feature which has been drawn. This value should lie
between 0 and 100.

abort
An output flag. It will be set to True if the current draw request should be
aborted. It will be set to False otherwise.

DESCRIPTION
The GenDrawingFeature() call notifies the Chart Manager that the FeatureDrawRequest
just sent by the Chart Manager to this Draw Module is being worked on. Multiple calls to
this routine should be made to indicate progress while a feature is being rendered. In fact,
Draw Modules should periodically make calls to this routine for feature products which
take a while to draw. Generally speaking, a minimum of one call per every 5 seconds
should be attempted. Calls to Gen DrawingFeature() are valid ONLY IF the Draw
Module is currently processing a FeatureDrawRequest. Calls to this routine at other times
result in a BadTiming error.

A Draw Module which calls GenDrawingFeature() should call
GenChangedFeature() once the feature draw is complete. Failure to do so will cause the
module library to automatically send an ErrorDrawingFeature error to the Chart Manager,
which aborts rendering of this feature.

A call to GenDrawingFeature() automatically checks the pending request queue to see if
any abort requests have been received. If so, the calling module is notified via the abort
parameter that the current draw request should be terminated.

Note: failure to send a draw response within the system specified time of
COACH_MONITOR_INTERVAL will cause the

request to be terminated. This is to prevent draw modules from hanging up the system.

43

COACH_MONITOR_INTERVAL is a system parameter that is at least 5 seconds.

ERRORS
BadServer

An invalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenDrawingFeature() should
be called only after a FeatureDrawRequest has been received.

SEE ALSO
GenAttach(3Gen), GenChangedFeature(3Gen), GenFeatDraw(3Gen), GenRequest(3Gen)

44

GenDrawingMap

FUNCTION
Notify Chart Manager that a map is being drawn.

SYNTAX
C Interface

void GenDrawingMap(server, percent drawn, abort) ServerId server;
int percent drawn;

Boolean *abort;
ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

percent drawn
The percentage of the map which has been drawn. This value should lie
between 0 and 100.

abort An output flag. It will be set to True if the
current draw request should be aborted. It will be set to False otherwise.

DESCRIPTION
The GenDrawingMap() call notifies the Chart Manager that the MapDrawRequest just
sent by the Chart Manager to this Draw Module is being worked on. Multiple calls to this
routine can be made to indicate progress as a map is being drawn. In fact, Draw Modules
should periodically make calls to this routine for map products which take a while to
draw. Generally speaking, a minimum of one call per every 5 seconds should be
attempted. Calls to GenDrawingMap() are valid ONLY IF the Draw Module is currently
processing a MapDrawRe quest. Calls to this routine at other times result in a
BadTiming error.

A Draw Module which calls GenDrawingMap() should call Gen ChangedMap() once the
map draw is complete. Failure to do so will cause the module library to automatically
send a ErrorDrawingMap error to the Chart Manager, which aborts rendering of this map
image.

A call to GenDrawingMap() automatically checks the pending request queue to see if any
abort requests have been received. If so, the calling module is notified via the abort
parameter that the current draw request should be terminated.

Note: failure to send a draw response within the system specified time of
COACH_MONITOR_INTERVAL will cause the request to be terminated. This is to
prevent draw modules

from hanging up the system. COACH_MONITOR_INTERVAL is a

45

system parameter that is at least 5 seconds.

ERRORS
BadServer

An invalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenDrawingMap() should be
called only after a Map DrawRequest has been received.

SEE ALSO
GenAttach(3Gen), GenChangedMap(3Gen), GenMapDraw(3Gen),
GenRequest(3Gen)

46

GenError

FUNCTION
Draw Module error handling routines.

SYNTAX
C Interface

#include <M/Generror.h>
#include <M/Genproto.h>

void GenSetErrorHandler(handler)

GenErrorProc handler;

void GenResetErrorHandler()

void GenSetIOErrorHandler(handler) GenIOErrorProc handler;

void GenResetIOErrorHandler()

char *GenErrorToString(error code) MapStatus error code;

char *GenRequestCodeToString(code)
GenProtocol code;

ARGUMENTS
handler An application-specific error handler.
error code

The code number of the generated error. Error codes are described in each
Draw Module manual page under the "ERRORS" heading.

DESCRIPTION
The Gen Library has two asynchronous error handler routines that are called whenever an
error occurs. One handler deals exculusively with IO errors and the other handles all other
errors. The Gen library's default error handler prints a message to the standard error
device.

Both error handlers can be replaced by user defined handlers by using the routines
GenSetIOErrorHandler() and GenSetEr rorHandler(). Once the error handler is replaced
by a user routine, this routine will be called whenever an error occurs. The default
handlers that the library defines can be restored with the routines:
GenResetIOErrorHandler() and GenResetErrorHandler().

Available to the user's error handlers are two routines for converting internal Chart
Manager codes to strings. These routines are: GenErrorToString(), and
GenRequestCodeTo String().

47

The GenErrorToString() routine provides a small text description for each error code, and
the GenRequestCodeTo String() routine provides a text description for each Draw
Module request code in the Chart Manager. Both routines return the text string
"Unknown" in the case where the input code is not defined by the Chart Manager. Both
routines return pointers to static string buffers which should not be modified by the caller.

The application error handler routine is called with the following format whenever a Chart
Manager error occurs:

(*handler) (server, request_code, error_code)
ServerId server;
GenProtocol request code;

MapStatus error code;

The IO error handler routine is called with the following format whenever an IO error
occurs:

(*handler) (server, error_code)

ServerId server;
MapStatus error code;

The error code passed to the IO Error Handler will most likely be SocketError. This is a
general error indicating that an error has occurred while trying to communicate over the
socket. If more information can be obtained, a more specific error code will be returned.

The server indicates the server over which the error occurred. NOTE: Calls to routines
which do not communicate with the Chart Manager are defined to return a status
immediately.

Other calls, including those documented in MMemory(3Map) and MuReference(3Mu),
and which might be used by Draw Modules, invoke separate error handling. See
MError(3C) for details on this error handling.

The request code can be used by the Draw Module to handle failures due to a particular
request. The error code parameter can be used by the Draw Module to handle specific
errors.

The MResetErrorHandler() call resets the error handler back to the default error handler.

RETURN
The routines GenErrorToString() and GenRequestCodeToString() return a string value.
This value is statically assigned , and should NOT need be freed using MFree.

STRUCTURES
C Interface

48

typedef int MapStatus;
typedef short GenProtocol;
typedef void (*GenErrorProc)(

ServerId server, GenProtocol message_type, MapStatus error_code);

typedef void (*GenIOErrorProc)(ServerId server, MapStatus error_code);

VALUES
MapStatus

AllocationFailure

Unable to allocate indicate resource. Specifically occurs on allocation of
colors.

AlreadyConnected
A connection to this Chart Manager already exists. Only one connection to
any one Chart Manager is allowed.

BadDisplay
The indicated GenDisplay does not exist, or else has been deleted.

BadServer
The indicated ServerId is invalid.

BadTiming
The indicated response is inappropriate under the current circumstances.

BadValueError
An input parameter to one of the Gen library calls is invalid.

BadWindow
The indicated geographic display window does not exist, or else has been
deleted.

DataSyncError
The Draw Module/Chart Manager protocol is out of sync. Some data may
be lost.

DisplayOpen
Unable to open a screen display within this Draw Module. This may occur
when a Draw Module tries to open another host's display, yet does not
have privilege.

FeatureAlreadyClaimed

49

The specified feature has already been reserved by another Draw Module.
See GenReserveFeature().

MapAlreadyClaimed
The specified map has already been reserved by another Draw Module.
See GenReserveMap().

PointsTooClose
Used in certain GenClip(3Gen) calls for returning clipping information to
the caller.

OutofMemory
The system's swap storage is full and is unable to allocate additional
memory.

SocketError
An exception occurred on one of the Gen library's communcation sockets.
This error code is generally associated with the I/O error handler.

UnknownError
The specified problem is undefined.

SEE ALSO
Gen-Intro(3Gen), MError(3C), MMemory(3Map), MuReference(3Mu),ERRORS section
under each application call.

50

GenFlushAllRequests

FUNCTION
Flush the Draw Module request queue.

SYNTAX
C Interface

void GenFlushAllRequests();

DESCRIPTION
The GenFlushAllRequests() routine clears the Draw Module request queue. Each pending
request is first looked at, and if any action is required, the default action is taken.

SEE ALSO
GenRequest(3Gen)

51

GenGetDisplay

FUNCTION
Get X Window display record from the Gen

Display code.
SYNTAX

C Interface
#include <X/Xlib.h>
Display *GenGetDisplay(ndpy)

int ndpy;
GenDisplay _GetGenDisplay (map window)

WindowId map window;

ARGUMENTS
ndpy The GenDisplay identifier, which is a field

present in many GenRequest structures, and which serves as a reference to
the X Window screen/display.

map window
The geographic window identifier.

DESCRIPTION
The GenGetDisplay() routine returns an X window display record, given an int code as an
input. The GetGenDisplay() routine returns a GenDisplay code, given the geographic
window as an input.

RETURN
The GenGetDisplay() routine returns a pointer to an X windows Display structure. The
value NULL is returned on error.

The _GetGenDisplay() routine returns the Gen library's display identifier for a given
geographic window. The value -1 is returned on error.

STRUCTURES
C Interface

typedef int GenDisplay;
The GenDisplay construct is used by the Gen library to reference the display

hardware. The Gen library caches references to the display hardware to minimize the
number of XOpenDisplay(3X11) calls made by a draw module.

ERRORS
BadDisplay

The specified ndpy is an invalid or non-existent display.

BadWindowId

52

The specified map window is invalid or non-existent.

SEE ALSO
XOpenDisplay(3X11)

53

GenInit

FUNCTION
Draw Module Standardized Initialization Functions.

SYNTAX
C Interface

#include <M/Genlib.h>
#include <M/GenInit.h>

int GenInitialize(argc, argv, inatts, inmask, outatts) int argc; /*Input*/
char **argv; /*Input*/ DrawModuleInputAttributes *inatts; /*Input*/
MapValueMask inmask; /*Input*/ DrawModuleOutputAttributes
*outatts; /*Output*/

ARGUMENTS
argc A count of the number of arguments passed to the

Draw Module when the command is invoked.

argv The NULL terminated list of command line argu-
ments. See execv(3) for more information.

inatts A structure which describes special initialization
attributes over and above the default attributes used to initialize the Draw
Modules's connection to the Chart Manager. The fields in this structure
are discussed further in the STRUCTURES section of this manual page.

inmask A bit mask which indicates those fields in inatts
which are being specified. Those fields not specified imply certain default
actions. The bit mask values are described in the BIT MASK section of
this manual page.

outatts A structure containing key fields and values for
communicating with the Chart Manager, and to a connected window. The
fields are discussed further in the STRUCTURES section of this manual
page.

DESCRIPTION
Draw Modules are encouraged to use the GenInitialize() function to provide a consistent
interface to the Chart Manager and to various Chart Windows from disparate Draw
Modules. GenInitialize() provides the following services to a Draw Module:

(1). Connection to Chart Manager.
(2). Consistent and proper error handling in the event

54

the connection fails.
(3). Consistent handling of a core set of command line options. The ability to
parse additional options special to a particular Draw Module is also supported.

When GenInitialize() is invoked the following actions take place:

(1). The command line arguments are parsed against the core options and any
additional options specified by your Draw Module. Syntax errors and/or
inconsistent handling of the command line arguments results in an error message
being printed to the standard error device, the command's proper syntax being
printed out, and the program returning -1. GenInitialize() makes use of the
MuOption(3Mu) routines to parse the command line options. See OPTIONS
section of this manual page for a list of core options supported.

(2). A connection to a Chart Manager is attempted. Generally this connection
takes place with the Chart Manager on the same machine, unless a command line
option specifies otherwise. If the connection fails, repeated attempts may be made
to connect to Chart Manager after a certain delay period. This depends on the
options specified on the command line. Eventually if no connection occurs, an
error message is printed to the standard error device, and the program returns -1.

RETURN
GenInitialize() returns -1 if any problems occur, and

returns 0 otherwise.

STRUCTURES
C Interface

typedef struct _DrawModuleInputAttributes{
Qualifiers *options;

} DrawModuleInputAttributes;

typedef struct _DrawModuleOutputAttributes {
char hostname[64];
char **extra_values;
Boolean *present;
ServerId server;

} DrawModuleOutputAttributes;

The DrawModuleInputAttributes structure provides GenInitial ize() with additional
information on how the Draw Module is to be initialized. Fields within this structure are
checked

55

only if the corresponding bit in the inmask bit mask is set. The fields in this structure are
described as follows:

options
A set of additional command line options which this client supports. Refer to the
MuOption(3Mu) manual page for information on filling in the fields of the
Qualifiers structure. Note that this list is NULL terminated. If no options are
specified, then only the core set of options are validated.

The DrawModuleOutputAttributes structure provides the Draw Module with the
information needed to communicate with the Chart Manager. The fields in this structure
are described as follows:

hostname
The name of the machine where Chart Manager is running, and to which this Draw
Module has connected. This is usually the host name of the machine where the
Draw Module is running, but the "-host" option can be used to specify an alternate
host.

extra_values
A NULL terminated list of command line parameters which are not options. These
are available to the Draw Module for processing.

present
A list of Boolean flags which indicate whether or not the extra options which a
Draw Module has specified are present on the command line or not. The list is
indexed in an identical manner to the list of Qualif iers in the
DrawModuleInputAttributes structure. A value of True for one of the members in
the list indicates that the corresponding option has been specified. A value of False
indicates that it is absent from the command line.

If no extra options have been specified, then this list will be set to NULL. C
programmers should free this space using a call to MFree when it is no longer
needed.

server
The internal connection identifier used to communicate with the Chart Manager.
This value is needed as a parameter in virtually all Gen library routines.

OPTIONS
GenInitialize() recognizes the following set of core command line options for all Draw
Modules which call it.

-delay time
Specify a delay period to wait between retries. The time value is in seconds.
Default value is 5 seconds.

56

-host host
Specify the name of the host the NTCS Chart Manager is running on. This is the
Chart Manager to which the Client process will attempt to attach. The default
host is the machine where this Draw Module is executing.

-help
Request help information concerning qualifier usage. This will print out the
command syntax, and supported options for the given Draw Module, and return -
1.

-retry [retries]
Specify that if a connection to the Chart Manager fails, then this Draw Module
should periodically retry its connection to Chart Manager. The optional retries
value specifies the number of retries to make before giving up. The "-delay"
option is available to modify the period. The default number of retries, if none are
specified, is 10. However, the default option if neither "-retries" nor "-delay" is
specified is to simply return -1 if the connection fails.

-noretry
Specify that if a connection to Chart Manager fails, then the Draw Module simply
returns -1. This is the default action.

BIT MASK
The inmask parameter is a bit mask which allows the Draw Module to selectively specify
those input attributes which it has specified. The following values are allowed:

DMAll
All bits are set.

DMNone
No bits are set.

DMQualifiers
This bit indicates that the command syntax for this Draw Module, as specified in
the qualifiers field, supports additional command line options besides those
specified in the OPTIONS section of this manual page.

SEE ALSO
GenAttach(3Gen), MuInit(3Mu), MuOption(3Mu),

57

58

GenNextRequest

FUNCTION
Obtain next request/notify from Chart

Manager.
SYNTAX

C Interface
void GenNextRequest(request)

GenRequest *request;
ARGUMENTS

request The next request on the request queue.

DESCRIPTION
GenNextRequest() obtains the next request from the Chart Manager. If the request queue
is empty, GenNextRequest() blocks until a request is received. GenNextRequest() is set
up to receive events from more than one Chart Manager if the Draw Module is connected
to more than one.

A returned request may require some actions by the Draw Module prior to another call to
GenNextRequest(). For example, a GenMapDrawRequest requires the Draw Module to
call the routines GenDrawingMap() and GenChangedMap() prior to receiving another
request. Failure to do so will result in default actions taking place upon the next call to
GenNex tRequest() or GenPending().

ERRORS
OutOfMemory

Unable to allocate memory for request record.

SEE ALSO
GenAttach(3Gen), GenChangedFeature(3Gen), GenChangedMap(3Gen),
GenDrawingFeature(3Gen), GenDrawingMap(3Gen), GenMapDraw(3Gen),
GenFeatDraw(3Gen), GenPending(3Gen), GenRequest(3Gen)

59

GenPending

FUNCTION
Return number of pending requests.

SYNTAX
C Interface

int GenPending()

DESCRIPTION
GenPending() returns the number of Chart Manager requests pending for this Draw
Module. The total number of events for all Chart Manager connections is returned. The
GenNex tRequest() call can be used to retrieve the actual request. This call should not be
made before the previous request has been serviced (see GenNextRequest()).

RETURN
The function returns the number of events still on the event queue. A value of 0 is
returned if no events are presently on the queue.

SEE ALSO
GenNextRequest(3Gen), GenRequest(3Gen)

60

GenRemoveFeatures

FUNCTION
Remove features which have been of interest to this Draw Module.

SYNTAX
C Interface

void GenRemoveFeatures(server, products, numproducts) ServerId server;
FeatureProduct *products;

int numproducts;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

products Describes a list of feature products which are no longer of interest to this Draw
Module.

numproducts
The number of products described in products.

DESCRIPTION
The GenRemoveFeatures() call specifies features which this Draw Module is no longer
responsible for rendering. Specified products in products were previously specified in one
or more GenAddFeatures() calls. If the Chart Manager has this Draw Module responsible
for rendering a particular feature, and if one of the items in the products list matches this
feature, then the Chart Manager will move the feature onto the unsupported feature
product list. Additionally, a GenFeatureVerifyRequest is again sent to each Draw Module
which had earlier expressed an interest in this product using the GenAddFeatures() call.
Another Draw Module can then claim this feature using GenReser veFeature().

The features are specified using FeatureProduct records. The value AnyFeature serves as a
wildcard and is supported with any of the fields in the FeatureProduct structure, including
the FeatureType field. The FeatureType, and FeatureSubType fields are the same fields
used in the Map FeatureAttributes structure.

STRUCTURES
C Interface

typedef struct _FeatureProduct {
FeatureType feature_type;
FeatureSubType sub_type;

} FeatureProduct;

ERRORS
BadServer

61

An invalid server id was used.

BadValueError
An invalid product specification was sent to the Chart Manager. The specified
value for FeatureType or FeatureSubType is not supported by the Chart Manager.

SEE ALSO
GenAddFeatures(3Gen), GenRemoveProducts(3Gen), GenAttach(3Gen),
MuReference(3Mu)

62

GenRemoveProducts

FUNCTION
Remove map products which have been of interest to this Draw Module.

SYNTAX
C Interface

void GenRemoveProducts(server, products, numproducts) ServerId server;
MapProduct *products;
int numproducts;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

products Describes a list of map products which are no longer of interest to this Draw
Module.

numproducts
The number of products described in products.

DESCRIPTION
The GenRemoveProducts() call specifies map products which this Draw Module is no
longer responsible for rendering. Specified products in products were previously specified
in one or more GenAddProducts() calls. If the Chart Manager has this Draw Module
responsible for rendering a particular feature, and if one of the items in the products list
matches this feature, then the Chart Manager will move the map onto the unsupported
map product list. Additionally, a GenMapVerifyRequest is again sent to each Draw
Module which has earlier expressed an interest in this product using the
GenAddProducts() call. Another Draw Module can then claim this map using
GenReserveMap().

The map products are specified using MapProduct records. The value AnyMap serves as a
wildcard and is supported with any of the fields in the MapProduct structure, including the
MapType field. The MapType, and MapSubType fields are the same fields used in the
MapChangeAttributes structure.

STRUCTURES
C Interface

typedef struct _MapProduct {
MapType map_type;
MapSubType sub_type;

} MapProduct;

ERRORS
BadServer

63

An invalid server id was used.

BadValueError
An invalid product specification was sent to the Chart Manager. The specified
value for MapType or MapSubType is not supported by the Chart Manager.

SEE ALSO
GenAddProducts(3Gen), GenRemoveFeatures(3Gen), GenAttach(3Gen),
MuReference(3Mu)

64

GenReserveFeature

FUNCTION
Request ownership of indicated feature product.

SYNTAX
C Interface

void GenReserveFeature(server, feature id,
feature type, atts, atts mask)

ServerId server; FeatureId *feature id; FeatureType
feature type; GenUpdateFeatureAttributes *atts; MapValueMask
atts mask;

ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

feature id
A unique identifier for the feature entry to be reserved by this Draw
Module. Passed to the Draw Module as part of a FeatureVerifyRequest.

feature type
An identification as to the class of the feature being reserved. Used by
Chart Manager to speed up the search for the product of interest.

atts A list of attributes as modified by the Draw
Module.

atts mask A mask representing the attributes from the list which the Draw Module actually
is modifying. The GenUpdMask(3Gen) manual page provides a list of
valid values for this mask.

DESCRIPTION
The GenReserveFeature() call tells the Chart Manager that this Draw Module wishes to be
responsible for all draws concerning this feature product. All subsequent requests to the
Chart Manager to draw this type of feature will result in a FeatureDrawRequest being sent
to this Draw Module. A Gen RemoveFeatures() call that includes this feature's product
codes disables Chart Manager from sending any more FeatureDrawRequests for this
product to this Draw Module.

The GenReserveFeature() call can be made many times for the same feature entry in order
to update the modifiable parameter list. If another Draw Module has already reserved this
feature, however, a FeatureAlreadyClaimed error will occur because at most one Draw

65

Module can be considered

responsible for drawing this feature product, even if many Draw Modules need to use this
product while drawing another feature product (such as a Draw Module which
dynamically merges two database types).

STRUCTURES
C Interface

typedef struct {
FLOAT scale;
FLOAT scale_lower;
FLOAT scale_upper;
int num_projections;
ProjectionType supported_projections[NUM_PROJECTIONS];
MapValueMask default_mask;
ColorAllocationScheme allocate;
ColorModel color_model;
FeatureAttributes defaults;

} GenUpdateFeatureAttributes;

The GenUpdateFeatureAttributes structure contains a set of fields which the Draw
Module can use to modify part of a feature description entry (see GenFeatEntry(3Gen) for
a full description of a feature description entry). The fields for this structure are defined as
follows:

scale
The Draw Module should provide a modified scale factor (in nautical miles per
pixel). This value is seen whenever a Chart Client uses the information from a
MListFeatures(3Map) call. The scale value calculations must be consistent across
all Draw Modules in order for the Chart Manager to be able to accurately "glue"
together disparate features. A scale value of AnyScale is not recommended, even
though the Chart Manager doesn't flag it as an error. This is because certain
special Chart Clients designed to identify and call up feature products would have
to estimate a good scale for displaying the feature.

scale_lower
The Draw Module should provide an absolute lower bound that it supports for
drawing this feature product. The scale value is in nautical miles per pixel. This
bound can be set to AnyScale, which means that the Draw Module supports the
drawing of this product with no lower bounds on scale. The Draw Module is
guaranteed to receive no draw requests for this product at scales

smaller than scale lower.
scale_upper

66

The Draw Module should provide an absolute upper bound that it supports for
drawing this feature product. The scale value is in nautical miles per pixel. This
bounds CAN be set to AnyScale, which means that the Draw Module supports the
drawing of this product with no upper bounds on scale. The Draw Module is
guaranteed to receive no draw requests for this product at scales larger than scale
upper.

num_projections
The size of the supported projections list which gets returned. The list size can be
no larger than NUM_PROJECTIONS, which at compile time equals the number of
different projections supported by the Chart Manager.

supported_projections
The Draw Module should provide a list of projections that it supports for drawing
this feature product. It is acceptable to place the wildcard projection value of
AnyProjection at any point in the list. If a Chart Client requests that a feature be
rendered in an unsupported projection, then a ProjectionNotSupported error is
sent back to the client. See MProjection(3Map) for additional information.

allocate
The color allocation scheme used for rendering the feature. Three values are
supported: AllocateReadOnly, AllocateShared, and AllocateReadWrite. The latter
value is the default, and supports the intensity color model; however, this
allocation scheme allocates precious color resources for private use. Color
resources may be shared on a limited basis, as a function of the current color
model in effect for the feature. If AllocateReadOnly is specified, then the color
gets shared regardless. AllocateShared works similarly to AllocateReadWrite;
however, all color resources are looked at in obtaining a color for the feature. If a
color cell is available, then it is allocated for private use; however, if a color cell is
not available, then it is allocated from the current pool of allocated colors, based
on the closest matching color. Allo cateShared is also a degraded color mode, for
cases where attempts to allocate colors in AllocateReadWrite mode fail.

color_model
The extent of sharing employed by the Chart Manager,

when the allocate scheme is AllocateReadWrite or Allo cateShared. Four color
models are supported for features:

DoNotShareColors
This model allocates the color for exclusive use by this feature. It will not
share the color with other users unless there are insufficient resources to
allow for the exclusive allocation to take place. Use this model if the
feature will be modifying the color value internally.

ShareColors

67

This model will attempt to share this color with any other feature that
renders with the same color, and which has allocated the color in a similar
fashion.

ShareColorsInClass
This model will attempt to share this color with any other feature in the
same class which requires the same color, and which has allocated the color
in a similar fashion. This is the default model.

ShareColorsInProduct
This model will attempt to share this color with similar feature products
which use the same color, and which have allocated the color in a similar
fashion.

default_mask
Those feature attributes which this draw module is modifying. These so called
"default" attributes will take on their "system default" values if they are not
specified here. The "system default" values are defined on the MFeatAtts(3Map)
manual page.

defaults
The default rendering attributes which this feature should take on. The description
of each feature rendering attribute is described in the MFeatAtts(3Map) man page.
Draw Modules are responsible for providing a default set of feature attributes for
rendering the feature. If these defaults are not provided, then system defaults for
the particular feature attribute are used instead. Client requests to render a feature
also use a feature mask to change or modify part of the default feature attributes
structure. This mask makes modifications to the default feature attributes only for
specific cases (such as a client requests that roads be drawn as dashed lines, rather
than solid lines).

ERRORS
BadServer

An invalid server id was used.

BadValueError
An invalid feature identifier specification, or an invalid color model was sent to
the Chart Manager.

FeatureAlreadyClaimed
The specified feature entry has already been claimed by another Draw Module.

SEE ALSO
GenAttach(3Gen), GenFeatEntry(3Gen), GenFeatVerify(3Gen), MChangeMap(3Map),
MFeatAtts(3Map), MListFeatures(3Map), MProjection(3Map),

68

GenReserveMap

FUNCTION
Request rendering responsibility of indicated map product.

SYNTAX
C Interface

void GenReserveMap(server, map id, map type, atts, atts mask)
ServerId server;
MapId map id;

MapType map type;
GenUpdateProductAttributes *atts; MapValueMask atts mask;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

map id A unique identifier for the map entry to be
reserved by this Draw Module. Passed to the Draw Module as part of a
MapVerifyRequest.

map type An identification as to the class of the map being reserved. Used by Chart
Manager to speed up the search for the product of interest.

atts A list of attributes as modified by the Draw
Module.

atts mask A mask representing the attributes from the list which the Draw Module actually
is modifying. The GenUpdMask(3Gen) manual page provides a list of
valid values for this mask.

DESCRIPTION
The GenReserveMap() call tells the Chart Manager that this Draw Module wishes to be
responsible for all draws concerning this map product. All subsequent requests to the
Chart Manager to draw this type of map will result in a MapDrawRe quest being sent to
this Draw Module. A GenRemoveProducts() call that includes this map's product code
disables Chart Manager from sending to this Draw Module any more MapDrawRe quests
for this product.

The GenReserveMap() call can be made many times for the same map entry to update the
modifiable parameter list. If another Draw Module has already reserved this map,
however, a MapAlreadyClaimed error will occur. At most one Draw Module can be
considered responsible for drawing this map product, even if many Draw Modules need to
use this product while drawing another map product (such as a Draw Module

69

which dynamically merges two database types).
STRUCTURES

C Interface

typedef int ColorModel;
typedef struct {

FLOAT scale;
FLOAT scale_lower;
FLOAT scale_upper;
int num_projections;
ProjectionType supported_projections[NUM_PROJECTIONS];
ColorModel color_model;

ColorAllocationScheme color_allocation;
MapColor *color_list;
int ncolors;

} GenUpdateProductAttributes;

The GenUpdateProductAttributes structure contains a set of fields which the Draw
Module can use to modify part of a map description entry (see GenMapEntry(3Gen) for a
full description of a map description entry). The fields for this structure are defined as
follows:

scale
The Draw Module should provide a modified scale factor (in nautical miles per
pixel). This value is seen whenever a Chart Client uses the information from a
MListMaps(3Map) call. The scale value calculations must be consistent across all
Draw Modules in order for the Chart Manager to be able to accurately "glue"
together disparate maps. A scale value of AnyScale is not recommended, even
though the Chart Manager doesn't flag it as an error. This is because certain special
Chart Clients designed to identify and call up map products would have to estimate
a good scale for displaying the map.

scale_lower
The Draw Module should provide an absolute lower bound which it supports for
drawing this map product. The scale value is in nautical miles per pixel. This bound
can be set to AnyScale, which means that the Draw Module supports the drawing
of this product with no lower bound on scale. The Draw Module is guaranteed to
receive no draw requests for this product at scales smaller than scale lower.

scale_upper
The Draw Module should provide an absolute upper bound that it supports for
drawing this map product. The

scale value is in nautical miles per pixel. This bound can be set to AnyScale, which
means that the Draw Module supports the drawing of this product with no upper
bound on scale. The Draw Module is guaranteed to receive no draw requests for

70

this product at scales larger than scale upper.

num_projections
The size of the supported projections list which gets returned. The list size can be
no larger than NUM_PROJECTIONS, which at compile time equals the number of
different projections supported by the Chart Manager.

supported_projections
The Draw Module should provide a list of projections that it supports for drawing
this map product. It is acceptable to place the wildcard projection value of
AnyProjection at any point in the list. Multiple references to a projection indicate a
preference for drawing the map product in that projection. Chart Clients which
request a new geographic display with a projection field set to AnyProjection allow
the Chart Manager to determine the best projection to use based on projection
preferences for each of the draw requests which make up the request. See
MChangeMap(3Map) and MProjection(3Map) for additional information.

color_model
This field identifies the color modeling scheme employed for drawing this map.
The valid values for this field are as follows:

OneColorSetPerMap
When set to this value, the color map is unique for the given map. A color
map must be supplied, indicating the number of colors needed to render the
map product. Example: Compressed Aeronautical Charts (CACs) employ
a unique color map for each chart.

OneColorSetPerMapProduct
When set to this value, the color map is unique across all maps in a given
map product. A map product is uniquely defined by its map type and map
subtype fields (see GenMapEntry(3Gen)). All instances for a given map
product share the same color map in this case. Only the first map being
reserved needs to supply a color map. All similar map products use the
same color scheme for rendering. Example, SPOT satellite images, a type
of IMAGMap employs a grey scaling to render the

image.
OneColorSetPerMapClass

When set to this value, the color map is unique across all maps in a given
map class. A map class is uniquely defined by its map type field (see
GenMapEntry(3Gen)). All map products for a given map class will share
the same color map. Only the first map product in the class needs to supply
a color map. All map products in the same class will use the same color
scheme for rendering. Example: ARC Digitized Raster Graphics (ADRG)
map products use a common color map.

71

UseFBModel
When set to this value, the color model used is based on the foreground
and background color values currently in effect. These colors are set and
modified by the MSetMapColors(3C) and MSetMapColorsByRGB(3C)
library calls, as well as via any call which includes the MapColorAttributes
structure (see MColor(3Map). When in this mode, the list and ncolors
fields are ignored, because the color values are derived from library calls.
Example: Vector map products such as World Vector Shoreline and
World Database use this scheme.

color_allocation
Specifies the type of color allocation needed for rendering this map product. The
following values are allowed:

AllocateReadWrite
Specifies that the color map should be modifiable. Color maps allocated in
this manner support the intensity model, which is modified by the
MSetIntensity(3Map) library call.

AllocateReadOnly
Specifies that the color map is non-modifiable. Color maps allocated in this
manner do not support the intensity model, nor can they be changed by any
of the other color models (such as UseFBMo del). However, colors
allocated in this manner may be shared among many Chart Clients and
Draw Modules.

AllocateShared
Specifies that the color map is modifiable to a limited degree. The color
will be shared with other maps and features which allocate the same color.
This color follows the intensity color

model, but should otherwise be treated as a nonmodifiable color.
AllocateShared is used as a first choice degraded mode if the Chart
Manager runs out of colors when allocating maps. This allows intensity to
be supported, but to a more limited degree than AllocateReadOnly.

AllocateTrueColor
Specifies that no color map is provided. Furthermore, the Draw Module
can render this map only on hardware which supports TrueColor color
maps. A Draw Module may choose to render maps using a number of
different color mapping schemes. In this case, the Draw Module should
select one of the other two allocation schemes. When a Map
DrawRequest is subsequently received, the ColorAt tributes can then be
referenced to see if TrueColor is supported.

color_list

72

Specifies the list of colors required for rendering the map. Values are specified as
triples of red, green and blue. Where intensity is supported, the Draw Module
supplies the full intensity values here. Values of red, green, and blue must follow
the XColor(3X11) model and should lie between 0 and 255. If the allocation
scheme which is specified is AllocateTrueColor, then a color map should not be
specified. The Draw Module is then responsible for the pixel values which are
written to the display hardware. See MColor(3Map) for information about the
MapColor structure.

ncolors
The number of colors in the supplied color map.

ERRORS
BadServer

An invalid server id was used.

BadValueError
An invalid map identifier specification, or an invalid color model was sent to Chart
Manager. Note: if no color model is specified, Chart Manager will try and match
this map product to an existing color model from a previous map product. If no
match occurs, Bad ValueError is returned.

MapAlreadyClaimed
The specified map entry has already been claimed by another Draw Module.

NOTES
(1). When colors are allocated AllocateReadWrite, limited color resources, and/or the
resident display hardware, may result in the colors actually be allocated AllocateShared
(first choice), or AllocateReadOnly. The draw request provide information on the color
allocation which actually occurs. (2). Colors allocated AllocateReadWrite may be
modified by the Draw Module, if desired. However, conflicts can arise when in degraded
mode, and another map allocates some of these colors as AllocateShared.

SEE ALSO
GenAttach(3Gen), GenMapEntry(3Gen), GenMapVerify(3Gen), MChangeMap(3Map),
MColor(3Map), MListMaps(3Map), MProjection(3Map), MSetIntensity(3Map),
MSetMapColors(3C), MSetMapColorsByRGB(3C),

73

74

GenSendError

FUNCTION
Send an error to the Chart Manager.

SYNTAX
C Interface

void GenSendError(server, error code)
ServerId server;

MapStatus error code;

ARGUMENTS
server The link between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

error code
The error code to be sent. Valid errors which can be sent are described
under VALUES.

DESCRIPTION
The GenSendError() call indicates to the Chart Manager that an error has occurred in the
indicated map window. Errors sent from Draw Modules are routed into the Chart
Manager's error handling mechanisms, and may get sent to individual Chart Clients. Some
errors get sent by the Draw Module library automatically if the Draw Module fails to
perform some required actions (see GenMapDraw(3Gen), for example). The
GenSendError() routine should be called only if something unexpected happens. For
example, if while drawing a map the network suddenly goes down, an ErrorDrawingMap
call might be appropriate. But if the GenDrawingMap() call has already been made, then
GenSendError() needs to be called to abort the draw.

VALUES
The following are legal values for error code:

BadMapEntry
An error occurred while trying to draw the requested map or feature. This error
associates the cause with bad data formats, missing files, or other related problems.

ErrorDrawingMap
An error occurred while trying to draw a requested map. This is a catch-all error
code for handling problems with a draw map request.

ErrorDrawingFeature
An error occurred while trying to draw a requested feature. This is a catch-all
error code for handling problems with a draw feature request.

75

FeatureNotAvailable
The specified feature is unavailable.

MapDrawAborted
The specified map draw was aborted due at the request of the Chart Manager.

OutOfMemory
The Draw Module is unable to allocate enough memory.

ProjectionNotSupported
The Draw Module does not support this projection.

SystemNotSupported
The Draw Module does not support this earth model.

UnresponsiveDrawModule
Suggested error to send if Draw Module would core dump. Note that Draw
Modules can trap certain errors using Unix signal handling. See signal(3) for more
information.

ERRORS
BadServer

An invalid server id was used.

BadTiming
An attempt to send an error to the Chart Manager occurred at an inappropriate
time. This routine should be called ONLY while servicing a draw request.

BadValueError
An invalid error code was specified.

BadWindowId
The specified map window is invalid, does not exist, or has been deleted.

SEE ALSO
GenAttach(3Gen), GenMapDraw(3Gen), GenError(3Gen),

GenMapVerify(3Gen), MError(3C)

76

GenServerToSocket

FUNCTION
Return the file descriptor of a Chart Manager's socket connection.

SYNTAX
C Interface

int GenServerToSocket(server)
ServerId server;

ARGUMENTS
server The connection to the Chart Manager; returned by

GenAttach().

DESCRIPTION
The GenServerToSocket() function returns the file descriptor of the connection to a Chart
Manager, or (-1) if the specified Chart Manager is invalid. This function is useful if a
Draw Module application is to make a call to select(2). This call is provided if a Draw
Module needs to use the file descriptor, but is not recommended. Requests, errors, and
responses should be handled through the routines provided in the Gen library.

RETURN
The file descriptor for the socket is returned. The value -1 is returned in the case of an
error.

ERRORS
BadServer

The Server id was invalid.

SEE ALSO
GenAttach(3Gen), GenDetach(3Gen), intro(2), select(2)

77

JMS_ConfigAOIGet

1.0 FUNCTION: Retrieve the current AOI setting for the database connection.

2.0 DESCRIPTION: This function will access the database connection that was established
through a previous call to JMS_DbConnect and retrieve the AOI. The default AOI is the
AOI of the database the application is connected to. The AOI can be modified with a call
to JMS_ConfigAOISet.

This function will allocate memory for the AOI. Therefore the JMTK application is
responsible for freeing the memory when it is no longer needed.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_ConfigAOIGet(tJmsConnection conn_id , tJmsArea **pAoi)

4.0 ARGUMENTS:

conn_id Used to identify the unique connection to the SDB.

pAoi The address of a structure pointer of the type tJmsArea.

5.0 RETURNS: A status of type tJmsStatus is returned, as defined below. The return status
will equal JMS_OPERATION_OK when the AOI has been successfully retrieved, and
returned in the pAoi structure.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_CONNECT_ID: Connection Id is not recognized

JMS_AOI_NOT_DEFINED: The AOI for the connection has been set

8.0 OTHER APIs: See also JMS_ConfigAOISet and JMS_DbConnect.

9.0 RELATED DOCUMENTATION: Not applicable.

78

JMS_ConfigAOISet

1.0 FUNCTION: Define the geographic area of interest (AOI) of a spatial database
connection.

2.0 DESCRIPTION: JMS_ConfigAOISet stores an area of interest that is associated with a
specific database connection. The AOI that is stored is used as a filter for fulfilling
database requests/services. This will limit the amount of data that needs to be processed
by the database functions.

In order to move away from the former paradigms of rectangular AOIs, this function
expects a list of geographic points of latitude/longitude pairs which are stored as decimal
degrees in clockwise order. The minimum number of points is four.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_ConfigAOISet(tJmsConnection conn_id , tJmsArea *pAoi);

4.0 ARGUMENTS:

conn_id Used to identify the unique connection to a SDB.

pAoi Holds the number of points and the latitude/longitude pairs for the points.

5.0 RETURNS: A status of type tJmsStatus is returned. The status will equal
JMS_OPERATION_OK when the passed AOI bas been successfully set for the specified
database connection.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_CONNECT_ID: Invalid database connection

JMS_NON_INTERSECT: AOI does not intersect connected database

JMS_AOI_DESCREPANCY: AOI structure is invalid

8.0 OTHER APIs: See also JMS_ConfigAOIGet.

9.0 RELATED DOCUMENTATION: Not applicable.

79

JMS_DataPathnameGet

1.0 FUNCTION: Retrieve the directory path to the requested data type.

2.0 DESCRIPTION: This API returns the paths to the data for a specified data type and a
given data base and within the established AOI. The function will return the paths to all
the data that intersect the AOI defined for the database connection. The API allocates the
necessary memory fro the list to be populated. Therefore the application is responsible for
freeing the path list when it is no longer needed.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_DataPathnameGet(tJmsConnection conn_id ,

tJmsDataType *data_type ,

tJmsPathStruct *pathlist

4.0 ARGUMENTS:

conn_id Used to identify the unique connection to the SDB.

data_type Identifies the specific data type such as DCW or CADRG

pathname Is a character pointer where the directory paths will be placed

5.0 RETURNS: This API returns a status of type tJmsStatus, as defined below, when an
error occurs. Otherwise the returned status equals JMS_OPERATION_OK along with
the list of directory paths in pathlist.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_CONNECT_ID: Returned when the connection id is not recognized.

JMS_INVALID_DATATYPE : Returned when the data type is not valid.

8.0 OTHER APIs: See also JMS_ConfigAOISet

9.0 RELATED DOCUMENTATION: Not applicable.

80

JMS_DbConnect

1.0 FUNCTION: Establish a unique connection to a JMTK geospatial data base.

2.0 DESCRIPTION: JMS_DbConnect is called to create a unique connection to a JMTK
geospatial data base that has previously been created through the Spatial Database
Manager application. This connection identifies the specific data base that will be
accessed and how the SDBM is to interact with that database for all subsequent data
requests and/or service calls. Therefore, the JMS_DbConnect function must be called
prior to any other Spatial Data Base Module service functions. This includes all but the
JMS_DbListGet function in JMTK Version 3.0.

An error is returned if the connection cannot be made. A successful connection will return
a unique connection id that is used by other APIs to identify the caller and the database
to be accessed. Currently there are no limits to the number of database connection that
can be made, although there are practical limits.

When a connection to a specific database can be established, the connection will inherit the
databaseÕs AOI as the default AOI. The application can revise the connection AOI with
a call to JMS_ConfigAOISet.

When invoked this function allocates memory for the connection to store additional
information created by other SDBM API calls. Therefore the JMTK application should
call the JMS_DbDisconnect function when the connection is no longer needed so that the
reserved memory can be freed.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_DbConnect(char *name , tJmsConnection conn_id)

4.0 ARGUMENTS:

name A character string identifying a specific geospatial data base. Note that a
list of available database names can be retrieved through the API call
JMS_DbListGet.

conn_id A variable of the type tJmsConnection that identifies a unique connection
to a specific spatial database.

81

5.0 RETURNS: Returns a status of type tJmsStatus, as defined below, and a unique
connection id of type tJmsConnection when the status equals JMS_OPERATION_OK.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_CONNECT_FAILURE_1: Cannot locate the list of databases

JMS_CONNECT_FAILURE_2: Cannot read the database list file

JMS_DB_OFFLINE: Requested database is off-line

JMS_VERSION_MISMATCH: Software and database versions donÕt match

JMS_OUT_OF_MEMORY: Out of memory

JMS_NO_DB_SPECIFIED: A database name was not supplied

8.0 OTHER APIs: See related APIs JMS_DbDisconnect, JMS_ConfigAOISet, and
JMS_DbListGet.

9.0 RELATED DOCUMENTATION: Not applicable.

82

JMS_DbDisconnect

1.0 FUNCTION: Terminate a previous successful database connection.

2.0 DESCRIPTION: MS_DbDisconnect is called to close an existing database connection.
This will free any memory that has been allocated to maintain the connection. An error is
returned if the connection id is not recognized.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_DbDisconnect(tJmsConnection conn_id)

4.0 ARGUMENTS:

conn_id Used to identify the unique connection to the SDB.

5.0 RETURNS: A status of type tJmsStatus is returned. The status will equal
JMS_OPERATION_OK when the connection is successfully closed otherwise it will be
set to the error status defined below.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_CONNECT_ID: returned when the connection id is not recognized.

8.0 OTHER APIs: See also JMS_DbConnect.

9.0 RELATED DOCUMENTATION: Not applicable.

83

JMS_DbListGet

1.0 FUNCTION: Retrieves a list of spatial database names.

2.0 DESCRIPTION: JMS_DbListGet is called to retrieve a list of available databases that
have been created by the Spatial DataBase Manager (SDBM) application. The database
names along with their access path are maintained in a private SDBM file. This file is
located in the directory defined by environment variable JMS_DBHOME. This function
will attempt to access the file, allocate memory to store the list, process the file and return
a list of the database names contained within it.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_DbListGet(tJmsDbList **db_list)

4.0 ARGUMENTS:

db_list A structure pointer that will be populated with the list of available database
that have been imported by the SDBM and the number of them. The
JMTK application is responsible for freeing the memory allocated for the
list when it is no longer needed.

5.0 RETURNS: Returns a status of type tJmsStatus, as defined below, and the list of
databases in the argument variable db_list when the status equals
JMS_OPERATION_OK.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_HOME: returned when the environment variable
JMS_DBHOME cannot be found.

JMS_DBLIST_MISSING: returned if the SDBM cannot find the database list file.

JMS_DBLIST_ERROR: returned if the database list file cannot be processed.

8.0 OTHER APIs: None.

9.0 RELATED DOCUMENTATION: Not applicable.

84

JMS_ErrorGet

1.0 FUNCTION: Retrieve the text message for the specified error code

2.0 DESCRIPTION: This function provides the capability to retrieve the text message for an
error code produced by the SDBM. The function accepts the error code and a character
pointer to store the message in. The function will allocate memory to store the error
message and thus the application programmer is responsible for freeing the memory when
it is no longer needed.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_ErrorGet(tJmsStatus error_code, char **error_buff)

4.0 ARGUMENTS:

error_code One of the recognized JMS error statusÕs.

error_buf A character pointer which will be used to allocate memory and store the
returned error message.

5.0 RETURNS: This function will return a status of type tJmsStatus equal to
JMS_OPERATION_OK when the error message is successfully returned in error_buf.
Otherwise it will return a status as defined below.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_ERROR_CODE: returned when the error code is not
recognized.

8.0 OTHER APIs: A complete list of the error codes can be found in the public include file
JMS_Errors.h

9.0 RELATED DOCUMENTATION: Not applicable.

85

JMS_InventoryGet

1.0 FUNCTION: Retrieve a data inventory for the specified database connection.

2.0 DESCRIPTION: This API is called to retrieve a list of the data volumes (i.e. DCW,
CADRG, WVS, etc.) which are stored within the spatial database identified by the
connection id. The calling application will pass the address of the data_list structure to
populate. This API will allocate memory for the list. Therefore the JMTK application is
responsible for freeing the list when it is no longer needed.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_InventoryGet(tJmsConnection conn_id ,

 tJmsDbInventory **data_list)

4.0 ARGUMENTS:

conn_id Used to identify the unique connection to the SDB.

data_list The address of a structure pointer where the inventory will be placed.

5.0 RETURNS: This API will return a status of type tJmsStatus, as defined below when an
error has occurred. If the return status equals JMS_OPERATION_OK the number of
data volumes that are within or partially within the established AOI for the database
connection will be returned in data_list.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_METADATA_PROCESS_ERR: returned when the metadata cannot be
processed.

JMS_INVALID_CONNECT_ID: returned when the connection is not
recognized.

8.0 OTHER APIs: None.

9.0 RELATED DOCUMENTATION: Not applicable.

86

JMS_MatrixGet

1.0 FUNCTION: Retrieve the matrix data from a spatial database

2.0 DESCRIPTION: This API will retrieve a previously stored matrix file from a spatial
database. The application specifies the database containing the matrix through the
connection id and the volume it is stored under through the data_type parameter. The
filename of the matrix data, received from the call to JMS_MatrixPut identifies the specific
matrix file to retrieve. The remaining parameters are returned as defined above.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_MatrixGet(tJmsConnection conn_id,

char *data_type,

char *filename,

tJmsArea *pAoi,

int *row,

int *col,

double *spx,

double *spy,

short *matrix data)

4.0 ARGUMENTS:

conn_id Identifies which database to retrieve the matrix data form.

data_type Identifies which volume of the specified data base to retrieve the matrix
data. This is defined by the application. Any character string is acceptable.

matrix_data Will contain the actual data retrieved from the database.

pAoi Will hold the area of interest which encompasses the matrix data.

row Will contain the number of rows of data within the matrix.

col Will contain the number of columns of data within the matrix.

spcx Will contain the spacing in the x direction of the matrix

spcy Will contain the spacing in the y direction of the matrix

87

5.0 RETURNS: This API returns a status of type tJmsStatus set to JMS_OPERATION_OK
when the requested matrix data is successfully retrieved along with all input arguments
populated. When errors are encountered the return status will be set as defined below.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_CONNECT_ID: returned when the connection ids is not recognized.

JMS_DATA_READ_ERROR: returned when the matrix cannot be read.

8.0 OTHER APIs: See also JMS_MatrixPut.

9.0 RELATED DOCUMENTATION: Not applicable.

88

JMS_MatrixPut

1.0 FUNCTION: Save matrix data in a spatial database

2.0 DESCRIPTION: This API will store a JMTK application defined matrix data in a specific
spatial database . The application specifies which spatial database to store the matrix in
via the connection id. The volume in which the matrix data will be located is defined via
the data_type parameter. The application must also define the AOI covered by the data,
the number of rows and columns along with the spacing in each direction.

The API will validate the parameters received and to store the matrix under the specified
volume. If the volume does not exist, it will create it. The filename that the matrix is
stored in will be created by the API and returned to the application.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_MatrixPut(tJmsConnection conn_id,

 char *data_type,

 short *matrix_data,

 tJmsArea *pAoi,

 int row,

 int col,

 double spcx,

 double spcy,

 char *filename)

4.0 ARGUMENTS:

conn_id Identifies which database to store the matrix data in.

data_type Identifies which volume of the specified data base will receive the matrix
data. This is defined by the application. Any character string is acceptable.

matrix_data Is ten actual data to be stored in the database.

pAoi Defines the area of interest which encompasses the matrix data.

row Is the number of rows of data within the matrix.

89

col Is the number of columns of data within the matrix.

spcx Is the spacing in the x direction of the matrix

spcy Is the spacing in the y direction of the matrix

5.0 RETURNS: The API returns a status of type JmsStatus equal to JMS_OPERATION_OK
when the matrix data has been successfully stored in the database along with the filename
that data was stored under. Otherwise, an error status is returned.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_INVALID_CONNECT_ID: returned when the connection id is invalid.

JMS_IMPORT_DATA_ERROR: returned when the matrix cannot be stored.

JMS_MALLOC_ERROR: returned when memory cannot be allocated.

8.0 OTHER APIs: See also JMS_MatrixGet.

9.0 RELATED DOCUMENTATION: Not applicable.

90

JMS_MetadataGet

1.0 FUNCTION: Retrieve metadata for a database, a data volume or a dataset within a
spatial database.

2.0 DESCRIPTION: JMS_MetadataGet is called to retrieve metadata that is maintained for
the database, the data volumes or the datasets. The first two arguments are mandatory.
The JMTK application must identify the database to retrieve metadata from by providing a
connection id. The application must also identify which level of metadata is being
requested. Level 1 is associated with the database metadata providing information relative
to the entire database. Level 2 metadata contains information for a specific data volume (
i.e. DCW, WVS. CADRG, DTED, etc.). Level 3 describes the actual datasets in a data
volume.

The next two arguments, data_type and data_set are optional depending upon the level
of metadata requested. If the application is requesting Level 1 (database metadata) then
both data_type and data_set are ignored and the application can pass a NULL in these
locations. If the application request Level 2 metadata, then data_type is mandatory and
data_set is ignored. A Level 3 request requires both the data_type and data_set to be
populated.

The next argument is a variable argument list that is terminated by a NULL. This variable
list contains pairs of Jms Metadata resources followed by the variable or structure to
populate. The application must pass a pointer to the variable or structure. The API will
allocate space, as appropriate so the application is responsible for freeing the memory
when it is no longer needed.

3.0 SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus JMS_MetadataGet(tJmsConnection conn_id, int level,

 char *data_type, char *data_set,

 va_list ,

 NULL)

4.0 ARGUMENTS:

conn_id: Identifies which database to access.

level Identifies the type of metadata to retrieve where LVL1=database,
LVL2=volume, LVL3=dataset.

91

data_type Is the name of the data volume to access if the level is LVL2 otherwise this
argument should be NULL.

data_set Is the name of the dataset within the data volume that is to be accessed if
the level is set to LVL3, otherwise this argument should be set to NULL.

va_list Is a variable argument list containing pairs of resources and appropriate
variables to store them in. This list is terminate by a NULL.

5.0 RETURNS: This API return will return an error status of the type tJmsStatus, as defined
below, when and error is encountered. Otherwise, the passed variables pointers are
populated and the return status will equal JMS_OPERATION_OK.

6.0 DEPENDENCIES: TBD

7.0 ERROR MESSAGES: The following messages are displayed when errors occur:

JMS_CONNECTIONID_ERROR: Connection id error.

JMS_LEVEL_ERROR: Level error.

JMS_UNKNOWN_METADATA_TYPE: Unknown metadata type.

JMS_UNKNOWN_DATA_TYPE: Unknown data type.

JMS_UNKNOWN_DATASET: Unknown dataset.

JMS_INVALID_RESOURCE_LIST: Invalid resource for level

JMS_METADATA_PROCESS_ERR: Metadata process error.

8.0 OTHER APIs: A list of all the Jms resources is provided in the public include file JMS.h

9.0 RELATED DOCUMENTATION: Not applicable.

92

JMV_LoadMap

JMV_UnLoadMap

FUNCTION
Load and unload map data

SYNOPSIS
#incldue <JMV/Load.h>

JMV_MapObjectID
JMV_LoadMap(

p_str pMapDataPath,
p_str pOutputDir,
JMV_Atom lAtom
);

int
JMV_UnLoadMap(

p_str pOutputDir,
JMV_MapObjectID MapId
);

DESCRIPTION
JMV_LoadMap() registers the map data products found in the argument pMapDataPath
with the JMTK Visual domain server. All associated map data product indices are created
under the directory specified in the argument pOutputDir. The map data type is specified
by the argument lAtom. The following map data product type convenience macros are
provided:

JMV_ATOM_DTED
JMV_ATOM_RPF
JMV_ATOM_VPF

JMV_UnLoadMap() unregisters the map data product specified by the argument lMapId
and removes any indices in the argument pOutputDir.

RETURN VALUE
JMV_LoadMap() returns a JMV_MapObjectID. The define constant BAD_OBJECT is
returned upon failure.
JMV_UnLoadMap() returns a boolean value, UNLOAD_SUCCESS or
UNLOAD_FAILURE

93

MAbortAnimation

FUNCTION
Abort the animation of an object.

SYNTAX
C Interface

void MAbortAnimation(channel, window)
Channel channel;
WindowId window;

ARGUMENTS

channel The connection to Cartographer; returned from
MOpenChannel().

window The window where animation is currently under way.

DESCRIPTION
MAbortAnimation aborts the animation of an object. If the current animation is a create
type, then the object is removed from the screen, and the object is freed. If the animation
is a modify type, then the object is left as it was before the animation started.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

SEE ALSO
MCreateObject(3C), MCreateText(3C), MModifyObject(3C)

94

MAbortMap

FUNCTION
Abort current map draw command.

SYNTAX
C Interface

void MAbortMap(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window to which the abort is directed.

DESCRIPTION
MAbortMap aborts the current draw request, if one is currently being processed. The
abort map is filtered to all connected Draw Modules which are processing a request for
this map. If the map has already been partially drawn (eg. the new area is being viewed),
then only those maps which have not completed are aborted. Depending on the state of
the map system when the abort is requested, one of two things can occur:

(1) If a draw is already partially complete, then those maps which have been already
drawn are preserved, and a ChangeMapNotify or UpdateMapNotify is sent to all
interested Clients.

(2) If no maps have yet been drawn, then the request is completely abandoned, and the
previous map is preserved. In this case, an AbortMapNotify is sent to all interested
Clients.

In both cases, the library error handler for the Client requesting the change map request,
or in the case of an internal request, the Client which owns the window, will receive an
error notification with value MapDrawAborted.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

95

MapDrawAborted
Sent automatically to the Client originally making the change request, or else sent
to the window's owner.

SEE ALSO
MChangeMap(3Map), MEvents(3C)

96

MAddFeature

FUNCTION
Add specified feature to a map.

SYNTAX
C Interface

void MAddFeature(channel, window, feature)
Channel channel;
WindowId window;

MapFeatureAttributes *feature;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the feature is to be
displayed.

feature A map feature to be added to the map. See
MFeatAtts(3Map) for information on this structure's contents.

DESCRIPTION
MAddFeature adds the specified feature to the currently drawn map. Some map products
may not support feature overlays. A FeatureNotSupported error occurs in this case. Also
some overlay features may not be available on all servers. In this case, a
FeatureNotAvailable error occurs. The MListFeatures(3Map) call provides a list of
supported features in the server.

If the specified feature or features are already present on the display list then this call will
modify the feature's attributes according to the attributes specified in the FeatureAttributes
record. If the feature is not present on the display list, then it is added to it. Note that the
sub type field supports the wildcard value AnyFeature to specify an entire class of features
to be added.

ERRORS
See MAddFeatures for a synopsis of possible errors.

SEE ALSO
MAddFeatures(3Map), MChangeMap(3Map), MFeatAtts(3Map),
MFeatMask(3Map), MModifyFeature(3Map), MModifyFeatures(3Map),
MRemoveFeature(3Map), MRemoveFeatures(3Map), MuReference(3Mu)

97

MAddFeatures

FUNCTION
Add specified features to a map.

SYNTAX
C Interface

void MAddFeatures(channel, window, feature, nfeatures)
Channel channel;
WindowId window;

MapFeatureAttributes *features;
int nfeatures;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the features are to be
displayed.

features A list of map features to be added to the map.
See MFeatAtts(3Map) for information on the contents of each record.

nfeatures The size of the feature list specified in feature.

DESCRIPTION
MAddFeatures adds the specified features to the currently drawn map. Some map
products may not support feature overlays. A FeatureNotSupported error occurs in this
case. Also some overlay features may not be available on all servers. In this case, a
FeatureNotAvailable error occurs. The MListFeatures(3Map) call provides a list of
supported features in the server. Note that this call should not be used to modify existing
features, but simply to add new features.

If the specified feature or features are already present on the display list then this call will
modify the feature's attributes according to the attributes specified in the FeatureAttributes
record. If the feature is not present on the display list, then it is added to it. Note that the
sub type field supports the wildcard value AnyFeature to specify an entire class of features
to be added.

ERRORS
BadChannel

An invalid channel id was used.

98

BadWindowId
An invalid window id was used.

BadValueError
An invalid or non-existent feature value was specified.

ErrorDrawingFeature
An error occurred while drawing the specified feature, which is described in the
accompanying MapErrorCodeIn formation structure.

FeatureNotSupported
The specified feature is not supported on the current map. An accompanying
MapErrorCodeInformation structure specifies the unsupported feature.

FeatureNotAvailable
The specified map feature is not available. This is probably because no feature
generator exists on-line for drawing it. The accompanying MapErrorCodeInforma
 tion structure specifies the unavailable feature.

MaxScale
The current view is zoomed too far out to display the given feature. The feature
product generating the error is provided in an accompanying MapErrorCodeInfor
mation structure.

MinScale
The current view is zoomed too far in to display the given feature. The feature
product generating the error is provided in an accompanying MapErrorCodeInfor
mation structure.

SEE ALSO
MAddFeature(3Map), MChangeMap(3Map), MFeatAtts(3Map), MFeatMask(3Map),
MModifyFeature(3Map), MModifyFeatures(3Map), MRemoveFeature(3Map),
MRemoveFeatures(3Map), MuReference(3Mu)

99

MAddInput

FUNCTION
Add an input source to the context.

SYNTAX
void MAddInput(fd, mask, proc, data)

int fd;
int mask;
MCallbackProc proc;
Pointer data;

ARGUMENTS
fd Specifies the source file descriptor on a Unix

based system.

mask Specifies the condition mask that tells when the
routine should be called. Valid entries for this field are ServiceReadMask,
ServiceWriteMask, Ser viceExceptMask, or ServiceAllMask.

proc Specifies the procedure that is to be called when
the condition is satisfied

data Specifies the argument that is to be passed to the
specified procedure when the callback is called.

DESCRIPTION
The MAddInput routine registers with the Service manager a source of data that is to be
monitored. The data source can be any sink or source of data that has an associated file
descriptor. The source is monitored for a given condition, and when the condition is met
the specified routine is called.

STRUCTURES
C Interface

typedef void *MCallbackProc();

A CallbackProc is the name of a function to specify as a
callback procedure.

ERRORS
BadValueError

The file descriptor for a channel has been specified. You cannot specify an input
handler for a Chart communications channel, as this would overwrite the input

100

handler for Chart.

SEE ALSO
MRemoveInput(3Map), MSetEventHandler(3Map)

101

MAddObject

FUNCTION
Add an object to a list or class.

SYNTAX
C Interface

void MAddObject(channel, list, object)
Channel channel;
ObjectId list;
ObjectId object;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

list The list or class to which the object will be
added.

object The object to be added to the list.

DESCRIPTION
MAddObject adds the specified object to the list or class. The attributes of the object
remain unchanged, it simply becomes a member of the list.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MRemoveObject(3C), MDestroyList(3C), MDestroyObject(3C),
MExchangeObject(3C)

102

MAddPoint

FUNCTION
Add a single point to the end of a polyline or polygon.

SYNTAX
C Interface

void MAddPoint(channel, object, points, location, max points)
Channel channel;
ObjectId object;
MapPoint *points;
int location;
int max points;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The location for which to place the segment.

points The point or points to be added to the Polygon or
Polyline.

location The place to insert the points. This value represents the index of the vertex
where the points are to be inserted. A negative value indicates to insert the
points at the beginning of the polygon or polyline, and a value greater than
or equal to the current number of points indicates to append the points.

max points
The number of points being inserted.

DESCRIPTION
MAddPoint inserts one or more points into a Polyline or Polygon object, without the
overhead of destroying and creating the object. This command can be used to append
points to the end of a polygon or polyline by providing a location value which exceeds the
current number of points in the object.

Using this command on objects that are not of type Polyline or Polygon will cause a
BadValueError.

ERRORS
BadChannel

An invalid channel id was used.

103

BadObjectId
An invalid object id was used.

BadValueError
The object is not a Polyline or Polygon object.

SEE ALSO
MDrawPolyLine(3C), MDrawPolygon(3C), MSetObjectData(3C)

104

MAddProduct

FUNCTION
Add specified map product to a map.

SYNTAX
C Interface

void MAddProduct(channel, window, product)
Channel channel;
WindowId window;

MapProductAttirbutes *product;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the product is to be
displayed.

product A map product to be added to the map display.

DESCRIPTION
MAddProduct adds the specified product to the currently drawn map. Some map
products may not be drawable in the current display. This routine uses the current
boundary attributes, and color criteria to display the given map product. The product is
overlayed onto the existing geographic display, and may occlude products which have
been previously drawn. If the map product has already been drawn, then the request is
simply ignored. A description of the product attributes is found on the
MProductAttributes man page.

ERRORS
See MAddProducts for a synopsis of possible errors.

SEE ALSO
MAddProducts(3Map), MChangeMap(3Map), MRemoveProduct(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

105

MAddProducts

FUNCTION
Add the specified map products to a map.

SYNTAX
C Interface

void MAddProducts(channel, window, products, nproducts)
Channel channel;
WindowId window;

MapProductAttributes *products;
int nproducts;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the products are to be
displayed.

products A list of map products to be added to the map
display.

nproducts The number of products to be added.

DESCRIPTION
MAddProducts adds the specified list of map products to the currently drawn map. Some
map products may not be drawable in the current display. This routine uses the current
boundary attributes, and color criteria to display the supplied map products. The products
are overlayed onto the existing map display, and may occlude products which have been
previously drawn. If the map products have already been drawn, then the request is
simply ignored. A description of the product attributes is found on the
MProductAttributes man page.

ERRORS
AlreadyDrawingMap

A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

BadMapEntry
An error occurred while drawing specified map product,

106

due to bad data format, missing files, or other related problems. The
MapErrorCodeInformation structure indicates the product generating the error.

BadWindowId
An invalid window id was used.

BadValueError
An invalid or non-existent map product was specified.

DuplicateMap
The specified map product is already being partially or fully displayed. The
duplicate portion is ignored; however, additional draw requests occur for the part
which hasn't been drawn.

ErrorDrawingMap
An error occurred for a specific draw request.

MapDrawAborted
The specified draw request was aborted at the request of some Chart Client.

MapTooSmall
The specified boundary results in an image which is too small to draw.

ProductNotFound
The specified request resulted in no map products being drawable which match the
given product(s).

ProjectionNotSupported
The specified product is not supported in the currently drawn projection.

SystemNotSupported
The specified product is not supported in the current earth model.

TooManyMaps
The specified product results in more than MAX_MAPS draw requests if fully
satisified. At most MAX_MAPS maps may supported inside a map window at
once. The net effect is to draw up to MAX_MAPS maps, and trim requests
beyond this.

SEE ALSO
MAddProduct(3Map), MChangeMap(3Map), MRemoveProduct(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

107

MAddTimeOut

FUNCTION
Register a timeout with the service mananger.

SYNTAX
#include <M/Service.h>

MapTimerId MAddTimeOut(proc, data, delay) MTimerCallbackProc proc;
Pointer data;
int delay;

ARGUMENTS
proc Specifies the procedure that is to be called when

time expires.

data Specifies the argument that is to be passed to the
specified procedure when the callback is called.

delay Specifies the time interval in milliseconds.

DESCRIPTION
The MAddTimeOut() routine registers with the Service manager an interval timer and
returns an identifier for it. The callback procedure, proc is called when the timer elapses,
and then the timeout is removed. The returned id can be used to remove the time out
before the timer has elapsed, with the call, MRemoveTimeOut.

RETURN
This function returns a MapTimerId. The value will be -1 if the call fails.

STRUCTURES
C Interface

typedef int MapTimerId;
typedef void *MTimerCallbackProc();

The MapTimerId is an integer identification of this timeout request. It can be used to
remove a timeout using the MRemoveTimeout call. The MTimerCallbackProc describes
the name of a procedure to call periodically.

SEE ALSO
MRemoveTimeOut(3Map)

108

MAddVolume

FUNCTION
Add a new volume to the Map Search Path.

SYNTAX
C Interface

void MAddVolume(channel, volume)
Channel channel;
char *volume;

ARGUMENTS
channel Specifies the connection to Chart returned by

MOpenChannel.

volume The volume to be added to the map search path.

DESCRIPTION
The MAddVolume function adds a new volume to the Map Search Path. All map data
files contained in this volume will be available for display in the server. If the environment
variable MapNoRecursion is set, then only the data files contained in the directory are
examined, otherwise all of the subdirectories (if any) are also examined.

When a volume is added, the files in that directory are checked to see if they contain valid
map headers. If a file does, then a Draw Module is identified which is then responsible for
drawing the map. If no Draw Module is found which is capable of drawing this map, then
the description is stored, pending any future Draw Modules which attach to Chart.

ENVIRONMENT
MapNoRecursion

When this environment variable is set, only the specified path is checked for map
files. Otherwise the specified path and all of its subdirectories are checked.

ERRORS
BadChannel

An invalid channel id was used.

BadVolume
The specified volume is invalid.

SEE ALSO
MReloadSearchPath(3Map), MRemoveVolume(3Map), MApplyAttributes(3C)

109

MApplyAttributes

FUNCTION
Set the attributes of an object and its children.

SYNTAX
C Interface

void MApplyAttributes(channel, object, atts,
value mask)

Channel channel;
ObjectId object;
ObjectAttributes *atts;
MapValueMask value mask;

ARGUMENTS

channel Specifies the connection to Cartographer; returned
from MOpenChannel.

object The object whose attributes will be changed.

atts The object attributes to be applied to the object.

value mask
A value mask representing the attributes to be modified.

DESCRIPTION
MApplyAttributes sets the attributes of an object and its children (if any) to the attributes
specified. If the Object is a Drawable, its attributes will be updated and the changes will
be visible on the screen (assuming the drawable is currently visible). Since a drawable
cannot have any children, this call would have the same effect as MSetAttri butes(). If
the Object is a Class, the attributes of the class as well as the members of the Class are set
to the specified attributes. If the object is a List, all of the objects in the List will be
updated. Finally, if the object is a Template, the attributes of the template will be updated,
and no changes will be seen on the screen. This would have the same effect as
MSetAttributes(), since a Template cannot have children.

The values for the ObjectAttributes fields are taken from
the parameter atts if the corresponding bit in the

value mask is set. Otherwise, the value is left unchanged.

ERRORS
BadChannel

110

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid field value was specified in the ObjectAt tributes structure.

SEE ALSO
MApplyColor(3C), MApplyData(3C), MApplyFillType(3C), MApplyFont(3C),
MApplyPickability(3C), MApplyVisibility(3C), MObjAtts(3C), MObjMask(3C),
MSetAttributes(3C)

111

MApplyColor

FUNCTION
Change the color of an object and its children.

SYNTAX
C Interface

void MApplyColor(channel, object, color)
Channel channel;
ObjectId object;
char *color;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The id of the object whose color is to be set.

color The new color for the object.

DESCRIPTION
MApplyColor sets the color of an object and all of its children to a named color from the
RGB Database. Behaviorally, this call works in a manner similar to MApplyAttributes().
The color must exist in the X Windows RGB Database. If it does not, the color is not
changed, and an error message is generated.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid color was specified.

ColorTableFull
The specified color cannot be realized because the color table is full.

SEE ALSO
MApplyAttributes(3C), MSetColor(3C)

112

MApplyData

FUNCTION
Set the client_data field of an object and its children.

SYNTAX
C Interface

void MApplyData(channel, object, client data)
Channel channel;
ObjectId object;
char *client data;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose data attribute is to be
set.

client data
The value to store in the client_data field.

DESCRIPTION
MApplyData sets the data field of an object and all of its children to the specified value.
Behaviorally this call works in a similar manner to MApplyAttributes(). The client_data
field can be any 32 bit data item. This item is returned back to the user when it is
requested through MQueryObject, or by an ObjectSelectEvent.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MApplyAttributes(3C) MSetData(3C)

113

MApplyFillOffset

FUNCTION
Set the pixel offset of an object and its children.

SYNTAX
C Interface

void MApplyFillOffset(channel, object, fill offset) Channel channel;
ObjectId object;
int fill offset;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose fill offset is to be
set.

fill offset
The new pixel fill offset for the object.

DESCRIPTION
MApplyFillOffset sets the fill offset of an object and all of its children. Behaviorally, this
call works in a manner similar to MApplyAttributes(). This value provides a starting pixel
offset for objects using FillTransparent fill type. Refer to MObjAtts(3C) for more
information on this field.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid fill offset was specified.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), MSetFillOffset(3C)

114

MApplyFillType

FUNCTION
Set the fill type of an object and its children.

SYNTAX
C Interface

void MApplyFillType(channel, object, fill type) Channel channel;
ObjectId object;
MapFillType fill type;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose fill type is to be set.

fill type The new fill type of the object.

DESCRIPTION
MApplyFillType sets the fill type of an object and all of its children. Behaviorally, this call
works in a manner similar to MApplyAttributes(). Valid values for fill type are:
FillEmpty, FillOpaque, FillTransparent, FillDotted, FillHorizontalStripes,
FillVerticalStripes, FillNega tiveSlants, FillPositiveSlants, and FillCrossHatch. If the fill
type is FillOpaque, then the object is filled completely with the color of the object. If the
fill type is FillEmpty, then only the border of the object is drawn. If the fill type is
FillTransparent, then the object is filled with a pattern that allows the user to see the map
through the object. The pattern which is drawn is a function of the fill weight and fill
offset fields. Refer to MObjAtts(3C) for more information on this field.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid fill type was specified.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), MSetFillType(3C)

115

MApplyFillWeight

FUNCTION
Set the fill weight of an object and its children.

SYNTAX
C Interface

void MApplyFillWeight(channel, object, fill weight) Channel channel;
ObjectId object;
int fill weight;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose fill weight is to be
set.

fill weight
The new fill weight of the object.

DESCRIPTION
MApplyFillWeight sets the fill weight of an object and all of its children. Behaviorally,
this call works in a manner similar to MApplyAttributes(). The fill weight attribute has no
effect on the object unless the fill type is set to FillTransparent. Refer to MObjAtts(3C)
for more information on how this works.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid fill weight was specified.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), MSetFillWeight(3C)

116

MApplyFont

FUNCTION
Set the font of an object and its children.

SYNTAX
C Interface

void MApplyFont(channel, object, font)
Channel channel;
ObjectId object;
char *font;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The id of the object whose font is to be set.

font The new name of the font for the object.

DESCRIPTION
MApplyFont sets the font of the object and all of its children to the named font.
Behaviorally, this call works in a similar manner to MApplyAttributes(). If the font name
is not valid, the font remains unchanged, and an error message is issued. If the object is
not of type Text, Symbol, or Char, there is no real change as these are the only three
object types that use the font parameter. All font names must be valid X Window font
names.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid font name was specified.

SEE ALSO
MApplyAttributes(3C), MSetFont(3C)

117

MApplyHiLite

FUNCTION
Highlight/Unhighlight an object in a window.

SYNTAX
C Interface

void MApplyHiLite (channel, object, hilite)
Channel channel;
ObjectId object;
Boolean hilite;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object Specifies the object to be highlighted.

hilite Specifies the highlight state. When set to True,
then the object will be highlighted; when set to False, the object will be
unhighlighted.

DESCRIPTION
The MApplyHiLite causes the object and all of its children to be displayed in the current
highlight color. If object is of type Drawable or Template, then this call is the same as
MSetHiLite. If object is of type List, then this call will change the highlight state for the
list and all of its children. If object is of type Class, then the highlight states of the Class
and all of its members are modified. The color of highlighted objects can be changed with
the routine MSetHiLiteColor.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), MSetHiLite(3C),
MSetHiLiteColor(3C)

118

MApplyLineStyle

FUNCTION
Set the line style of an object and its children.

SYNTAX
C Interface

void MApplyLineStyle(channel, object, line style) Channel channel;
ObjectId object;
MapLineStyle line style;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line style attribute is to be
changed.

line style
The new line style for the object.

DESCRIPTION
MapApplyLineStyle sets the style of the line. The line style determines whether the line is
solid, dashed, or double dashed. Behaviorally, this call works in a manner similar to
MApplyAttributes(). Valid line styles are MapLineSo lid, MapLineDashed, and
MapLineDoubleDashed.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid line style was specified.

SEE ALSO
MApplyAttributes(3C), MSetLineStyle(3C)

119

MApplyLineType

FUNCTION
Set the line type of an object and its children.

SYNTAX
C Interface

void MApplyLineType(channel, object, line type) Channel channel;
ObjectId object;
MapLineType line type;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line type attribute is to be
changed.

line type The new line type for the object.

DESCRIPTION
MApplyLineType sets the line type of an object and all of its children. Behaviorally, this
command works in a similar manner to MApplyAttributes(). The line type determines
how a line will be drawn on the earth. Geodesic, GreatCircle, and RhumbLine are valid
line types. If the line type is Geodesic, the default value, a line is drawn between the two
points after they are projected, the exact path that the line crosses will vary depending on
the projection. If the line type is GreatCircle, a line is drawn between the two points
following a great circle; this will be the shortest path between the two points. In the last
case, RhumbLine, the two points are connected with a line of constant bearing. In the
latter two cases (GreatCircle and RhumbLine), the lines may not be straight, depending on
the projection.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid line type attribute was used.

120

SEE ALSO
MApplyAttributes(3C), MSetLineType(3C),

121

MApplyLineWidth

FUNCTION
Set the line_width of an object and its children.

SYNTAX
C Interface

void MApplyLineWidth(channel, object, line width) Channel channel;
ObjectId object;
int line width;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line width attribute is to be
changed.

line width
The new line width for the object.

DESCRIPTION
MApplyLineWidth sets the line width of an object and all of its children. Behaviorally,
this command functions in a manner similar to MApplyAttributes().

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid line width was specified.

SEE ALSO
MApplyAttributes(3C), MSetLineWidth(3C)

122

MApplyPickability

FUNCTION
Set the pickability of an object and its children.

SYNTAX
C Interface

void MApplyPickability(channel, object, pickability) Channel channel;
ObjectId object;
Boolean pickability;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose pickability attribute
is to be set.

pickability
The new pickability of the object.

DESCRIPTION
MApplyPickability sets the pickability of an object, and all of its children. If object is a
List, then the pickability of the List and all of its child objects are set. If object is a Class,
then all of the class members have their pickability modified. If object is a Template or a
Drawable, then this call is identical to MSetPickability. Valid values for the pickability
parameter are Pickable (True) and NotPickable (False).

The pickability determines whether or not an object is selectable on the window. In the
simplest case (an object that is not a member of a list), if the object is selected and its
pickability is set to either Pickable or ParentPick able, then an ObjectSelectEvent is sent
to the Client that owns the object. If the object is NotPickable, then no event is sent.

If an object is a member of a list, and is Pickable an ObjectSelectEvent is sent to the
Client, just as if it were not in a list. If the object is not pickable, then no event is sent. If
the object's pickability is set to ParentPick able then the pickability of the object's parent is
checked. If this is pickable, then an ObjectSelectEvent is sent with the id of the list (not
the id of the object actually

selected). If the list is NotPickable, then no event is sent, and if the list is ParentPickable,
then this process continues until an object is found that is not pickable, or the top of the
object tree is reached. If the top list in the object tree is ParentPickable, then an event is
sent to the Client just as if this object were set to Pickable.

123

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValue
An invalid value for pickability was specified.

SEE ALSO
MApplyAttributes(3C), MSetPickability(3C)

124

MApplyPixel

FUNCTION
Change the color of an object using the pixel value.

SYNTAX
C Interface

void MApplyPixel(channel, object, pixel)
Channel channel;
ObjectId object;
unsigned long pixel;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The id of the object whose color is to be changed.

pixel The pixel value of the color for the object.

DESCRIPTION
MApplyPixel sets the color of a single object to the specified pixel value. Behaviorally,
this call works in a similar manner to MApplyAttributes(). The pixel value must be a valid
pixel value for the display, and should be a read-only allocated color.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid pixel value was specified.

SEE ALSO
MApplyColor(3C), MObjAtts(3C), MSetAttributes(3C),

125

MApplyTemplate

FUNCTION
Copy a template into an object and all of its children.

SYNTAX
C Interface

void MApplyTemplate(channel, object, template,
value mask);

Channel channel;
ObjectId object;
ObjectId template;
MapValueMask value mask;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose attributes are to be changed.

template The template to be applied.

value mask
A value mask representing the attributes to be applied.

DESCRIPTION
MApplyTemplate applies the object attributes specified by template to the object or group
of objects represented by object. Only the attributes whose bit is set in the value_mask
will be set in the objects. The effect of this call is nearly identical to MApplyAttributes,
with the exception that MApplyAttributes takes its attributes from an ObjectAttributes
structure, whereas MApplyTemplate copies the attributes from an existing template.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id or template ID was used.

SEE ALSO
MApplyAttributes(3C), MSetTemplate(3C) MObjAtts(3C)

126

MApplyVisibility

FUNCTION
Set the visibility of an object and its children.

SYNTAX
C Interface

void MApplyVisibility(channel, object, visibility) Channel channel;
ObjectId object;
Boolean visibility;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose visibility is to be changed.

visibility
The new visibility state for the object.

DESCRIPTION
MapApplyVisibility sets the visibility of an object and all of its children. Valid values for
visibility are Visible (True) and Hidden (False). If an object's visibility is set to Hidden,
then the object is not visible on the map. If the object is not a List or a Class, this routine
is the same as MSetVisibility.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid visibility state was specified.

SEE ALSO
MApplyAttributes(3C), MSetVisibility(3C), MObjAtts(3C)

127

MChangeMap

FUNCTION
Change the maps and features displayed in a map window.

SYNTAX
C Interface

void MChangeMap(channel, window, atts, value mask) Channel channel;
WindowId window;
MapChangeAttributes *atts;
MapValueMask value mask;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window whose map is to be changed.

atts The structure from which the values (as specified
by the value mask) are to be taken. The value mask should have the
appropriate bits set to indicate which attributes have been set in the struc-
ture.

value mask
Which attributes of the map are to be changed. The mask is the bitwise
inclusive OR of the valid attribute mask bits. If value mask is zero
(CMSetNone), the attributes are ignored, and the value of that field for the
currently displayed map is used instead. Valid values for value mask
include:

CMSetBoundary: The map boundaries are changed according to the value
of MapBoundaryAttri butes.

CMSetProjection: The map's projection is changed to the value specified in
the ProjectionType.

CMSetProduct: A new map display is drawn according to the list of
MapProductAttributes.

CMAddProduct: The current map display is updated with the given list of
MapProductAttributes. The requested set is overlayed onto the
existing map if they do not already exist.

128

Note 1: if neither CMSetProduct nor CMAddProduct is set, then
the draw request derives the list of maps to be drawn based upon
the existing set of map products.

Note 2: CMAddProduct is mutually exclusive with CMSetProduct.

CMSetColors: The map's color and/or intensity is changed according to the
list of provided MapColorAttributes.

CMSetFeature: The map's feature overlays are drawn according to the list
of provided Map FeatureAttributes.

CMAddFeature: The indicated set of features is added to the current set of
displayed features.

Note 1: if neither CMSetFeature nor CMAddFeature is set, then
the draw request derives the list of features to be drawn based upon
the last specified list of Map FeatureAttributes, from a
MChangeMap() which had the CMSetFeature or CMAddFeature
set, or else by way of an MAddFeature(3Map) or
MAddFeatures(3Map) call.

Note 2: CMAddFeature is mutually exclusive with CMSetFeature.

CMSetAll: Changes all attributes of the map to the new values specified in
the MapChangeAttri butes structure.

DESCRIPTION
The MChangeMap function changes the map display in the specified window. This
function forces the window to be changed to the attributes that are set in MapChangeAttri
 butes.

The Chart Manager receives this request and formulates one or more draw requests to be
processed by Draw Modules. Periodic updates, in the form of events, are provided for
Clients interested in the progress of a change map request.

Error processing for a change map request can take on two forms: synchronous and
asynchronous. Synchronous errors are fed back immediately to the Client making the
change map request. An example of such an error is BadValueError, which occurs when
one of the specified fields is illegal. Asynchronous errors occur at some time after the
Client returns from the MChangeMap call. These errors occur as the result of some
problem encountered by the Chart Manager, or one of the Draw Modules, while the
request is being serviced. These errors are also fed back to the Client making the request
via its error handler.

Errors which occur while a change map request is in progress can be either fatal or non-

129

fatal. Fatal errors result in the map request being canceled, and an AbortMapNotify being
sent to all interested Clients. The most common case where this occurs is when all of the
map products being requested are denied, resulting in no map products being drawn.
Nonfatal errors which occur include the inability to draw one particular map product.
These errors are fed back to the error handler of the Client making the request. Some of
these errors have associated data. See the ERRORS section below, as well as
MError(3C) for more detail.

In the case where the request being made is internally generated, say, for example, a zoom
box request, the errors are then fed back to the process which owns the window (eg, the
Chart Client which created the window).

STRUCTURES
C Interface

typedef struct {
int num_products;
MapProductAttributes products[MAX_MAPS]; ProjectionType
projection; MapBoundaryAttributes boundary;

int num_colors;
MapColorAttributes color[MAX_COLOR_MODELS]; int
num_features; MapFeatureAttributes *features;

} MapChangeAttributes;

The fields for the MapChangeAttributes structure are
described below:

products
A list of map product specifications. This structure is described in detail under
MProdAtts(3Map). These values are used only if the CMSetProduct bit is set in
value mask.

num_products
The number of products specified in the products list. This value cannot exceed the
Chart Manager constant MAX MAPS.

projection
A projection to be displayed. The MProjection(3Map) man page discusses display
projections in detail. This value is used only if the CMSetProjection bit is set in
value mask.

Note: not all map products can be displayed in all projections; hence some
projections may not be able to simulataneously display two different map products.
The value AnyProjection allows the Chart Manager to determine the projection
most common to all of the map products.

130

color
A list of color specifications for the map display. The MColor(3Map) man page
discusses color models in detail. This specification is used only if the CMSetColor
bit is set in value mask.

num_colors
The number of color specifications in the color list. This value cannot exceed the
Chart Manager constant MAX COLOR MODELS.

boundary
The boundaries of the map to be displayed. The MBoundary(3Map) man page
discusses map display boundaries in detail. This specification is used only if the
CMSetBoundary bit is set in value mask.

features
A list of features to be displayed. The MFeatAtts(3Map) man page discusses map
features in detail. This specification is used only if the CMSet Features bit is set in
value mask.

num_features
The number of feature attributes in the feature list. There is no built in limit to the
number of features which can be specified in an MChangeMap request.

The MError manual page provides more information on the
fields in the MapErrorCodeInformation structure

ERRORS
Note 1: Errors returned by an internal change map request are similar, except that they
are sent to the owner of the window.

Note 2: Where indicated, some of the errors below return a MapErrorCodeInformation
structure. In the case of errors related to drawing features, the map type and sub type
fields in this structure are set to the internal constant AnyMap. The counterpart feature
fields are set to the feature which caused the error. Likewise, for errors related to drawing
map products, the feature type and feature subtype fields are set to the internal constant
Any Feature. The counterpart map fields are set to the map product which caused the
error. The MuReference(3Mu) calls can be used to obtain a string equivalent value for
any of the fields.

AlreadyDrawingMap
A map draw command is already in progress for the specified window. This is a
synchronous error in all cases.

BadChannel

131

An invalid channel id was used. This is a synchronous error in all cases.

BadMapEntry
An error occurred while drawing one of the map products. This error is due to
problems with the map data format, missing data files, or other related problems.
This is an asynchronous, non-fatal error. An associated
MapErrorCodeInformation structure is returned with this error which gives
specific information on the particular map product generating this error.

BadServer

The Draw Module responsible for drawing the map product has terminated. This
is usually an asynchronous error. The MapErrorCodeInformation structure
indicates the product generating the error.

BadWindowId
An invalid window id was used. This is a synchronous error in all cases.

BadValueError
An invalid value was specified in one or more of the MapChangeAttributes fields.
This is a synchronous error in all cases.

ErrorDrawingMap
An error occurred on a specific draw request. This is an asynchronous, non-fatal
error. An associated MapEr rorCodeInformation structure is returned with this
error which gives specific information on the particular map product generating
this error.

ErrorDrawingFeature
An error occurred while a feature draw was in progress. This is an asynchronous,
non-fatal error. An associated MapErrorCodeInformation structure is returned
with this error which gives specific information on the particular map feature
generating this error.

FeatureNotAvailable
Specified feature is not available. This is a synchronous, non-fatal error, which
returns the feature generating the error in a MapErrorCodeInformation structure.

FeatureNotSupported
A specified feature is not supported on the given set of map products. This can
occur due to restrictions inside a Draw Module for supporting the given feature
under the current set of Draw Modules, display projection, earth model, and
coverage. This is a synchronous, non-fatal error, which returns the map feature
generating the error in a MapErrorCodeInformation structure.

HardwareNotSupported

132

A specified map could not be rendered because the underlying hardware does not
support TrueColor. This is a synchronous, non-fatal error, which returns the map
product generating the error in a MapErrorCodeIn formation structure.

MapDrawAborted

The specified draw request was aborted at the request of some Chart Client. This
is an asynchronous nonfatal error. The MapErrorCodeInformation structure is
returned along with the error, and indicates the product generating the error.

MapTooSmall
The specified boundary results in an image which is too small to draw. This is a
synchronous, non-fatal error. The MapErrorCodeInformation structure is returned
along with the error, and indicates the product generating the error.

MaxExtents
The specified coverage inside the request exceeds some boundary extent in the
given projection. The view is automatically recentered so that the extents are not
exceeded. This is a non-fatal error. A MapErrorCodeIn formation structure is
returned along with the error, and indicates the projection generating the error.

MaxScale
The specified map scale exceeds the maximum scale supported. This error can
occur under two conditions. In one case, the error refers to a scale factor which is
projection dependent. In this case, the view is automatically set to the maximum
scale. In the second case, the error refers to a specific map or feature product,
which cannot be drawn because the view is zoomed out too far. In this case, a
MapErrorCodeInfor mation structure is returned along with the error. This is a
non-fatal error in both cases.

MinScale
The specified map scale is smaller than the minimum scale supported. This error
can occur under two conditions. In one case, the error refers to the desired
coverage. In this case, the coverage is checked against an absolute factor common
to all projections. The view is automatically set to the minimum scale. The second
case occurs when a given map or feature product cannot be drawn because the
scale is too small (eg. the view is zoomed too far in) for the map to be seen. The
MapErrorCodeInformation structure is returned along with the error in this case.
This is a non-fatal error in both cases.

NoMapsDrawn
The change map request resulted in no map products being drawable. This is a
fatal error, which can be either synchronous or asynchronous. In either case, other
non-fatal errors may precede it.

NotEnoughColors

133

The chart graphics server is unable to allocate the colors necessary to draw the
indicated map. This is a non-fatal, asynchronous error. The MapErrorCodeInfor
mation structure which is returned in this case describes the map product which
could not be drawn.

OutOfMemory
Unable to allocate memory to perform request. This error can also occur if the
image memory cannot be allocated for a particular product. In the latter case, an
associated MapErrorCodeInformation structure is also returned.

ProductNotFound
The specified product was not found at the given area of coverage. This is a
synchronous, non-fatal error, which returns a MapErrorCodeInformation structure
indicating the product generating the error.

ProjectionNotSupported
The specified projection cannot display the given map or feature product. This is a
synchronous, non-fatal error. The MapErrorCodeInformation structure indicates
the product and projection generating the error. If a MapErrorCodeInformation
structure is not included with this error, then the given projection is simply unsup-
ported by the Chart Manager.

SystemNotSupported
The calculated earth model cannot display the given map or feature product. This
is a synchronous, non-fatal error. The MapErrorCodeInformation structure
indicates the product generating the error.

TooManyMaps
The change map request would result in more than MAX_MAPS draw requests if
fully satisfied. This is a non-fatal, synchronous error. The net effect is to trim the
number of draw requests to a maximum of MAX_MAPS.

UnresponsiveDrawModule
A Draw Module is not responding to a pending request. This is an asynchronous,
non-fatal error. The MapEr rorCodeInformation structure indicates the product
generating the error.

WorldFitProblem
A view of the entire world is not possible in the given projection for the given
pixmap and window extents. When drawing the whole world, the Chart Graphics
server

attempts to fit a view of the world to either the window width or the window
height boundary. The other boundary is extended as needed. If this extension
goes beyond the extents of the pixmap, then the world view is clipped in that
direction, and this warning is issued. This is a synchronous, non-fatal error. A

134

MapErrorCodeInformation structure is returned along with the error, and indicates
the projection generating the error.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MAddProduct(3Map),
MAddProducts(3Map), MAttsMask(3Map), MBoundary(3Map), MColor(3Map),
MFeatAtts(3Map), MListMaps(3Map), MModifyFeature(3Map),
MModifyFeatures(3Map), MQueryMap(3Map), MProdAtts(3Map), MProjection(3Map),
MRecenterMap(3C), MRemoveFeature(3Map), MRemoveFeatures(3Map),
MRemoveProduct(3Map), MRemoveProducts(3Map), MSetMapColors(3C),
MSetMapColorsByRGB(3C), MSetIntensity(3Map), MSetMapBounds(3Map),
MSetMapWidth(3C), MScaleMap(3Map)

135

MChangeSymbol

FUNCTION
Modify the drawn symbol in a symbol object.

SYNTAX
C Interface

void MChangeSymbol(channel, object, symbol)
Channel channel;
ObjectId object;
NTDSSymbol symbol;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

object The object whose symbol is to be changed.

symbol The new symbol to be drawn.

DESCRIPTION
MChangeSymbol changes the NTDS symbol displayed in a symbol object, without the
overhead of destroying and creating the object. Using this command on non-symbol
objects will cause a BadValueError.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
The object is not a Symbol object.

SEE ALSO
MDrawSymbol(3Map), MSetObjData(3Map), MSetSymbSz(3Map)

FUTURE EXPANSIONS
The MChangeSymbol command is a simplified interface to the MSetObjectData()
function.

136

MChangeText

FUNCTION
Modify the text field in a text object.

SYNTAX
C Interface

void MChangeText(channel, object, text, ntext) Channel channel;
ObjectId object;
char *text;
int ntext;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.
object The object wholse text field is to be changed.
text The new text string for the object.
ntext The number of characters in the text string.

DESCRIPTION
MChangeText changes the text display in a Text object, without the overhead of
destroying and creating the object. Using this command on objects whose type is not Text
(including AngleText) will cause a BadValueError.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
The object is not a Text object.

SEE ALSO
MDrawText(3C), MSetObjectData(3C)

FUTURE EXPANSIONS
The MChangeText command is provided for compatability with earlier systems, and
provides a simplified interface to the MSetObjectData() routine.

137

MChannelToSocket

FUNCTION
Return the socket id of the specified channel.

SYNTAX
C Interface

int MChannelToSocket(channel)
Channel channel;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

DESCRIPTION
The MChannelToSocket function returns the socket id of the given channel, or (-1) if the
specified channel is invalid. This function is useful if a Client application is to make a call
to select(2). Many graphics toolkits allow sockets to be added as input sources; with this
function you can get the socket id, and add it to eliminate the need to poll through the
MPending(3C) call.

RETURN
The file descriptor for the socket is returned. The value -1 is returned in the case of an
error.

ERRORS
BadChannel

An invalid channel id was used.

SEE ALSO
MOpenChannel(3C), MCloseChannel(3C)

138

MCloseChannel

FUNCTION
Close a communication channel to Cartographer.

SYNTAX
C Interface

void MCloseChannel(channel)
Channel channel;

ARGUMENTS
channel The connection to Cartographer; returned by MOpen

Channel.

DESCRIPTION
MCloseChannel closes the communication channel between the application program and
the Cartographer Manager specified by channel. All of the objects owned by the channel
are removed from the Map. If this channel is the only owner of a window, the window
will be destroyed.

ERRORS
BadChannel

The channel id was invalid.

SEE ALSO
MOpenChannel(3C)

139

MCopyTemplate

FUNCTION
Create a new template; take values from specified template.

SYNTAX
C Interface

ObjectId MCopyTemplate(channel, template)
Channel channel;
ObjectId template;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

template Specifies the ID of the template to be copied.

DESCRIPTION
MCopyTemplate creates a new template whose ObjectAttributes are a copy of the
attributes of template.

RETURNS
The ObjectId value of the new template. The value Invali dObjectId is returned if the call
fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

SEE ALSO
MCreateTemplate(3C)

140

MCreateClass

FUNCTION
Create an object class.

SYNTAX
C Interface

ObjectId MCreateClass(channel, window, atts,
value mask, objects, nobjects)

Channel channel;
WindowId window;
ObjectAttributes *atts;
MapValueMask value mask;

ObjectId *objects;
int nobjects;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

window Specifies the window where the class of objects
applies.

atts Specifies a set of object attributes that applies
to the class of objects.

value mask
A bit mask which represents fields in the atts structure which should be
used.

objects A list of objects which are the initial members of
the class.

nobjects The number of objects in the list.

DESCRIPTION
MCreateClass forms a Class of objects. An object can be a member of many Classes, and
a Class can be used to set attributes (such as visibility) on groups of objects through the
use of only one command. An object Class contains a list of objects and an associated
ObjectAttributes structure. The objects contained in the Class list are made up of Lists
and Drawables. The ObjectAttributes for the Class are initialized to atts. If atts is set to
NULL, or for

141

those values of atts where the corresponding bit field in value mask is not set, the value is
taken from the Defaul tAttributes structure for that window.

RETURNS
The Object ID of the created object Class.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object ID (one which is neither a List or a Drawable) was specified in
the objects parameter.

BadWindowId
An invalid window id was used.

BadValueError
An invalid value has been specified in one of the ObjectAttributes fields.

SEE ALSO
MDestroyObject(3C) MAddObject(3C), MRemoveObject(3C)

142

MCreateList

FUNCTION
Create a list in a window.

SYNTAX
C Interface

ObjectId MCreateList(channel, window, objects, nob jects)
Channel channel;
WindowId window;
ObjectId *objects;
int nobjects;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.
window The window to creat the list in.
objects The objects in the list.
nobjects The number of objects in the list.

DESCRIPTION
The MCreateList function creates a list that will contain the objects passed. The number
of ids may be 0, and the pointer to the array NULL. This will create a list with no
children. Objects contained within the List must be Drawables or Lists of other objects.
The object id of the newly created list is returned. If the list can not be created,
InvalidObjectId is returned.

RETURNS
The ObjectId value of created object list. The value

InvalidObjectId is returned if the call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was specified in the list.

BadWindowId
An invalid window id was used.

SEE ALSO
MDestroyList(3C), MAddObject(3C), MRemoveObject(3C)

143

MCreateObject

FUNCTION
Create an object through animation.

SYNTAX
C Interface

ObjectId MCreateObject(channel, template, object type) Channel channel;
ObjectId template;
ObjectType object type;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used when the
object is created.

object type
Specifies the type of Drawable object to be created.

DESCRIPTION
The MCreateObject function will create an object of the specified type using animation.
Valid objects which can be created via animation include:

Arc
This function requires three points: a center point and the two endpoints of the arc.

Box
This function requires two points: a center point and a point on the box.

Circle
This function requires two points: a center point and a point on the circle.

Ellipse
This function requires three points: a center, a point to specify the major axis, and
a point to specify the minor axis.

Line
This function requires two points to specify the line's

endpoints.
Polygon

This function requires N points for an N sided polygon. Animation extends from

144

the previous line segment and the polygon is created only after the finish key or
third button on the input device is pressed. The MCreatePoly call allows Clients to
place restrictions on the maximum number of points in the created object.

Polyline
This function requires N points for an N segment polyline. Animation extends
from the previous line segment and the polyline is created only after the finish key
or third button on the input device is pressed. The MCreatePoly call allows
Clients to place restrictions on the maximum number of points in the object.

The create object call makes use of animate keys. The animate keys are defined by the
latest MSetAnimateKeys call.

If the escape key is pressed anytime during the animate process, then the animation is
aborted, and no object is created. If the select key is pressed during the animate process,
this is equivalent to selecting a point. If the finish key is pressed and there are insufficient
points to create an object definition, then this key is ignored. If enough points have been
entered to complete an object's definition, then animation mode stops and the object is
created. If the right input device button is pressed, this is equivalent to the finish key
being pressed.

If an animation is already in effect, then a BadOwner error occurs.

Upon successful creation of an object, an ObjectChangedEvent is sent to the application
which requested the creation. Also, the application which requested the creation is
registered as the object's owner.

RETURNS
The ObjectId value of created object. The value InvalidOb jectId is returned if the call
fails. Note that the returned value is not an active object until a ObjectChanged event
occurs for this object.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadObjectId
An invalid template id was used.

BadOwner
An animation is already in effect.

BadValueError
An invalid object type was specified.

145

SEE ALSO
MAbortAnimation(3C), MCreatePoly(3C), MCreateText(3C), MEvents(3C),
MObjAtts(3C), MSetAnimateKeys(3C)

146

MCreatePoly

FUNCTION
Create a polygon or polyline object through animation.

SYNTAX
C Interface

ObjectId MCreatePoly(channel, template, object type, max points)
Channel channel;
ObjectId template;
ObjectSubType object type;

int max points;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used when the
object is created.

object type
Specifies the type of drawable to be created, only Polygon or Polyline
should be specified here. For other object types, use the conventional
MCreateObject(3C) call.

max points
Specifies the number of points for a polygon or polyline.

DESCRIPTION
The MCreatePoly call creates a polygon or polyline object using animation. It differs from
MCreateObject only because of an additional parameter, max points, which allows a Client
to restrict the maximum number of points which an object can have. For more
information, see MCreateObject.

RETURNS
The ObjectId value of created object. The value InvalidOb jectId is returned if the call
fails. Note that the returned value is not an active object until a ObjectChanged event
occurs for this object.

ERRORS
BadChannel

147

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadObjectId
An invalid template id was used.

BadOwner
An animation is already in effect.

BadValueError
An invalid object type was specified. This can also occur if a bogus max points
value is specified.

SEE ALSO
MAbortAnimation(3C), MCreateObject(3C), MEvents(3C), MObjAtts(3C),
MSetAnimateKeys(3C)

148

MCreateTemplate

FUNCTION
Create a template.

SYNTAX
C Interface

ObjectId MCreateTemplate(channel, window, atts, value mask)
Channel channel;
WindowId window;
ObjectAttributes *atts;
MapValueMask value mask;

ARGUMENTS
channel

Specifies the connection to Cartographer; return by MOpenChannel.

window
Specifies the window on which to create the template.

atts Specifies the object attributes to be assigned to this template. A value of NULL will
create a template with all attribute values set to their default values.

value mask
Specifies a mask of object attributes used for setting the template's initial values.
Object attributes which are not set take on their default values. Object masks are
defined in MObjMask(3C).

DESCRIPTION
MCreateTemplate creates an ObjectAttributes template in the server. The values for the
various fields are taken from the parameter atts if the corresponding bit in the

value mask is set. Otherwise, the default value is used;
see MObjAtts(3C) for a discussion of each attribute field and its default value. If atts is
set to NULL, then a template with default attributes is created.

RETURNS
The ObjectId value of the created template. The value

InvalidObjectId is returned if the call fails.

ERRORS
BadChannel

149

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid value in one or more fields of the ObjectAt tributes structure occurred.

SEE ALSO
MApplyTemplate(3C), MCopyTemplate(3C), MObjAtts(3C),
MObjMask(3C), MSetTemplate(3C)

150

MCreateText

FUNCTION
Place text on the screen through animation.

SYNTAX
C Interface

ObjectId MCreateText(channel, template, text, ntext) Channel channel;
ObjectId template;
char *text;
int ntext;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the text.

text The text string to be placed on the Map.

ntext The number of characters in the string to be
displayed.

DESCRIPTION
The MCreateText function allows the user to place text interactively on the map. Once
the call is made, the text will appear on the screen, and the user can move it around with
the cursor. When the left mouse button is pressed, a location for the text is selected, and a
line is drawn from the location of the text to the current cursor location. The line can then
be moved around to give it an offset from the location specified.

The MCreateText call makes use of animate keys. The animate keys are defined by the
latest MSetAnimateKeys call.

If the escape key is pressed anytime during the animate process, then the animation is
aborted, and no text is created. If the select key is pressed during the animate process, this
is equivalent to selecting a point, and the text is created at the cursor location. The
function of the finish key is similar in this case.

Upon successful creation of a text object, an ObjectChangedEvent is sent to the
application which requested the creation. Also, the application which

requested the creation is registered as the object's owner. If an animation is already under

151

way, then a BadOwner error occurs.

RETURNS
The ObjectId value of created object. The value InvalidOb jectId is returned if the call
fails. Note that the returned value is not an active object until a ObjectChanged event
occurs for this object.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadObjectId
An invalid template id was used.

BadOwner
An animation is already under way.

BadValueError
An invalid object type was specified.

SEE ALSO
MAbortAnimation(3C), MEvents(3C), MObjAtts(3C)

152

MCreateWindow

FUNCTION
Create a window in Chart showing world view.

SYNTAX
C Interface

WindowId MCreateWindow(channel, atts, atts mask, map, map mask)
Channel channel;
WindowAttributes *atts;
MapValueMask atts mask;

MapChangeAttributes *map; MapValueMask map mask;

ARGUMENTS
channel The connection to Chart; returned by MOpenChannel.

atts Attributes that describe the window to be created.
See MWindowAtts(3C) for details about this structure.

atts mask For those attributes whose corresponding bit field is not set in atts mask, the
default value is used.

map An initial map to be drawn. If set to NULL, then
the default map will be drawn.

map mask A bit mask representing the attributes of the map to be modified.

DESCRIPTION
The MCreateWindow function creates a window with the specified attributes. A default
map showing a vector map product at world view is drawn if no map attributes are
specified. The window attributes structure contains a list of initial attributes for creating
the window. See MWindowAtts(3C) for details. The atts mask field is further defined in
MWinMask(3C). Default values for window attributes are also described in those
sections.

RETURNS
The WindowId of the created window. The value

InvalidWindowId is returned if the call fails.
ERRORS

BadChannel
An invalid channel id was used.

153

BadDisplay
The window could not be created because the X Windows display specification
does not exist or is inaccessible.

BadValueError
An invalid value was specified in one or more of the attributes.

DuplicateWindow
The request to create this window was aborted because the named window already
exists.

TooManyWindows
The request to create this window was aborted because the system parameter for
the number of windows supported by Chart was exceeded.

BUGS
The pixmap width and pixmap height fields should never be smaller than the width and
height of the displayed window. Generally, Chart does not allow this to happen.
However, in the event that the map window is reparented to another window, Chart loses
control over the size of the map window. In the event that the specified pixmap width or
pixmap height is then smaller than the map window, unpredictable results can occur.

SEE ALSO
MDestroyWindow (3C), MEventMask (3C), MQueryWindow (3C), MMapWindow (3C),
MUnMapWindow (3C), MUseWindow (3C), MUseNamedWindow (3C), MWindowAtts
(3C), MWinMask (3C), XOpenDisplay (Xlib)

154

MDebug

FUNCTION
The Chart Manager Debugging Utilities.

SYNTAX
C Interface

void MAllocVerify();

Several debugging utilities are available for debugging application programs that use the
Chart Manager. C programmers who use MAlloc, MReAlloc, and MFree can compile
their programs with the -DDEBUG_MALLOC compile switch in order to verify that their
application is using proper memory management. When this switch is enabled, and a call
is made to MAlloc() or MReAlloc(), a print statement occurs indicating the filename
making the call, the line number of the call, and the resulting address of the allocated
space.

MAllocVerify() can be called by your program at any time to retrieve current memory
allocation statistics. This call is machine dependent, and has varying levels of effectiveness
based on the machine which it is called from.

A number of other machine dependent debugging features are also available, including a
memory allocation address value checker (eXT and Sun), and a memory allocation
exception handler (NeXT). Refer to the malloc(3) manual page for available capabilities
on your machine. If the M library is compiled with -DDEBUG_MALLOC, some of these
machine dependent capabilities are automatically enabled.

MSetFPDebugLevel() allows the caller to specify actions to take during floating point
exceptions. The effect of this call is machine dependent.

Available to both Ada and C programmers is a single step capability using the environment
variable MapSingleStep. If this variable is set, then the channel between the application
and the Chart Manager to which it is connected is flushed after every request. In addition,
the call does not return until AFTER the request has been actually serviced by the Chart
Manager. Normally, requests will be buffered and sent in a group. If an error occurs, it
may be signaled well after the call is actually made.

ENVIRONMENT
MapSingleStep

If set using setenv(1), then application's communication with the Chart Manager
enters a single step mode.

SYSTEM DEPENDENCIES
HP Series 300, 400, 700, 800,

155

MAllocVerify()calls memorymap(3). Otherwise, no special handling is performed.

Sun 3, Sun 4, SparcStations, DTC-2
MAllocVerify() calls malloc verify(3) to verify the memory heap, and prints a
message if something is wrong. It also prints out a map of all allocated addresses
by calling mallocmap(3).Programs MAlloc() also get the benefits of malloc
debug(3), which is automatically set during the first call to MAlloc().

NOTES
None of the memory debugging capabilities are available unless both the tools library
(libtools.a) and your program have been compiled with "DEBUG_MALLOC" defined as a
C preprocessor variable. The option "-DDEBUG_MALLOC" works on the C compiler
command line. Better yet, use imake, with the configuration files located in
${LIBS}/config, and set the "DebugMalloc" variable in the site.def file to the value
"YES".

SEE ALSO
MMemory(3Map),

156

MDestroyList

FUNCTION
Destroy an object and its children.

SYNTAX
C Interface

void MDestroyList(channel, object)
Channel channel;
ObjectId object;

ARGUMENTS
channel The connection to Cartographer; returned by MOpen

Channel.

object The ID of the object to be destroyed.

DESCRIPTION
MDestroyList destroys the object from the object data base of the specified window. If
the object is a list, all of the children of the list are destroyed recursively. If the object is
not a list, this call is identical to MDestroyOb ject. If the object is visible within the Map
Window, it will first be removed from the screen, and then destroyed. Any further
references to this object ID will result in a BadObjectId error.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
The specified object does not exist.

SEE ALSO
MCreateList(3C), MDestroyObject(3C)

157

MDestroyObject

FUNCTION
Destroy an object in Cartographer.

SYNTAX
C Interface

void MDestroyObject(channel, object)
Channel channel;
ObjectId object;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

object The ID of the object to be destroyed.

DESCRIPTION
MDestroyObject destroys the object from the object data base of the specified window. If
the object is visible within the Map Window, it will first be removed from the screen, and
then destroyed. If the object is a List or a Class, only the list or class will be destroyed, its
children will remain unchanged. Any further references to this object ID will result in a
BadObjectId error.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
The object specified does not exist.

SEE ALSO
MDestroyList(3C)

158

MDestroyWindow

FUNCTION
Destroy a window in Cartographer.

SYNTAX
C Interface

void MDestroyWindow(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

window Specifies the window to be destroyed.

DESCRIPTION
MDestroyWindow destroys the window in the server. All data associated with the
window is freed within the server. Any further reference to window will result in a
BadWindowId error. If the window is currently mapped, it will be unmapped before it is
destroyed.

The window's owner is defined to be the Client which created the window. The window
is destroyed ONLY IF the specified Client is the window's owner. Otherwise, the window
connection is released, and the window is destroyed ONLY IF this Client is the last
remaining connection to the window.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id passed is not valid.

BadOwner
The specified Client is not connected to the indicated window.

SEE ALSO
MCreateMapWindow(3C), MMapWindow(3C), MUnMapWindow(3C),
MUseWindow(3C), MReleaseWindow(3C)

159

MDrawArc

FUNCTION
Draw an arc to a window.

SYNTAX
C Interface

ObjectId MDrawArc(channel, template, center, bearing, major axis, minor axis,
angle1, angle2)

Channel channel;
ObjectId template;
MapPoint *center;
FLOAT bearing;
FLOAT major axis;

FLOAT minor axis;
FLOAT angle1;
FLOAT angle2;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

template A reference to ObjectAttributes used for drawing the arc.

center The center point of the arc, in decimal degrees.

bearing The bearing of the major axis from true north in
degrees.

major axis
The major axis of the arc, in nautical miles.

minor axis
The minor axis of the arc, in nautical miles.

angle1 The start of the arc in degrees from true north.

angle2 The extent of the arc in degrees from true north.

DESCRIPTION
The MDrawArc function draws a circular or elliptical arc to the specified window. Each
arc is specified by a center

160

point and two angles. The arc will be drawn around this
center point with the given major and minor axes.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid value for one of the arc parameters was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

161

MDrawBitmap

FUNCTION
Draw a bitmap.

SYNTAX
C Interface

ObjectId MDrawBitmap(channel, template, location, data, width, height, x hot, y
hot)

Channel channel;
ObjectId template;
MapPoint *location;
char *data;
int width;
int height;
int x hot;

int y hot;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the bitmap.

location The location of the bitmap on the map.

data The bitmap data, in X bitmap format.
width The width of the bitmap in pixels.
height The height of the bitmap in pixels.

x hot The x origin of the bitmap in pixels.
y hot The y origin of the bitmap in pixels.

DESCRIPTION

The MDrawBitmap function draws a bitmap in the specified window. The bitmap is
drawn at the location specified, and is centered around the point within the bitmap
specified by (x_hot, y_hot). The data must be in X Bitmap format.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

162

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid bitmap, location, or hot spot was specified.

SEE ALSO
MDestroyObject(3C), MObjAtts(3C)

163

MDrawBox

FUNCTION
Draw a box.

SYNTAX
C Interface

ObjectId MDrawBox(channel, template, center, bearing, width, height)
Channel channel;
ObjectId template;
MapPoint *center;
FLOAT bearing;
FLOAT width;
FLOAT height;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the box.

center Specifies the center point of the box.
bearing Specifies the bearing of the box to be drawn.
width Specifies the width of the box in nautical miles.
height Specifies the height of the box in nautical miles.

DESCRIPTION
The MDrawBox function draws a box in the specified window. The box is centered about
the specified center point, with the appropriate width and height. This object differs from
a rectangle in that it can be moved about the center point with the MMoveObject function.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

164

BadObjectId
An invalid template id was used.

BadValueError
An invalid bearing, center, width, or height was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

165

MDrawChar

FUNCTION
Draw a single character.

SYNTAX
C Interface

ObjectId MDrawChar(channel, template, character, loca tion, x offset, y offset)
Channel channel;
ObjectId template;
int character;
MapPoint *location;
int x offset;

int y offset;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the symbol.

character The character to be drawn.

location The center point of the character to be drawn.

x offset The x pixel offset from the location for the character.

y offset The y pixel offset from the location for the character.

DESCRIPTION
The MDrawChar function draws a single character to the specified window using the font
and color specified by tem plate. The character is drawn offset from location, the offset is
specified by the parameters x offset, and
y offset. This command should NOT be used for drawing the NTDS symbol fonts defined
in Appendix A because those fonts are 16 bit fonts. The MDrawChar16 or
MDrawSymbol calls should be used instead.
The template may be a Template, Class, or List object. In

any case, the attributes from the template object are copied into the attributes of the newly
created object. If the template is a List or a Class, the newly created object is added as a

166

member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.`

BadValueError
An invalid location was specified.

SEE ALSO
MDestroyObject(3C), MDrawChar16(3C), MDrawSymbol(3C),
MObjAtts(3C), MSetOffset(3C)

167

MDrawChar16

FUNCTION
Draw a single character.

SYNTAX
C Interface

ObjectId MDrawChar16(channel, template, character, location, x offset, y offset)
Channel channel;
ObjectId template;
short character;
MapPoint *location;
int x offset;

int y offset;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the symbol.

character The character to be drawn.

location The center point of the character to be drawn.

x offset The x pixel offset from the location for the character.

y offset The y pixel offset from the location for the character.

DESCRIPTION
The MDrawChar16 function draws a single 16 bit character in the specified window using
the font and color specified by template. The character is drawn at location. Certain spe-
cial fonts, defined in appendix A, enable NTDS symbols to be drawn in various sizes and
intensity. Integer constants are available for drawing these symbols. A symbol's font can
be changed dynamically by updating the ObjectAttributes font name field after creating the
symbol. Refer to the FONT INFORMATION section under the MDrawSymbol(3C)
manual page for more information.

The only difference between this and MDrawChar is that this routine provides access to
fonts with more than 256 symbols.

168

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.`

BadValueError
An invalid location was specified.

SEE ALSO
MDestroyObject(3C), MDrawChar(3C), MDrawSymbol(3C),
MObjAtts(3C), MSetOffset(3C)

169

MDrawCircle

FUNCTION
Draw a circle.

SYNTAX
C Interface

ObjectId MDrawCircle(channel, template, center, radius)
Channel channel;
ObjectId template;
MapPoint *center;
FLOAT radius;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the circle.

center Specifies the center point of the circle.

radius The radius in Nautical Miles of the circle.

DESCRIPTION
MDrawCircle draws a circle in the specified window. It uses the following object
attributes to determine how the circle is to be passed: fill_style, line_style, color, and
line_width.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

170

BadValueError
An invalid center or radius was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

171

MDrawEllipse

FUNCTION
Draw an ellipse.

SYNTAX
C Interface

ObjectId MDrawEllipse(channel, template, center, bear ing, major axis, minor
axis)

Channel channel;
ObjectId template;
MapPoint *center;
FLOAT bearing;
FLOAT major axis;

FLOAT minor axis;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the ellipse.

center Specifies the center point for the ellipse.

bearing The bearing of the ellipse in degrees.

major axis
The major axis of the ellipse in nautical miles.

minor axis
The minor axis of the ellipse in nautical miles.

DESCRIPTION
MDrawEllipse function draws an ellipse in the specified window. The ellipse is drawn
with the specified major and minor axes. These values are in nautical miles. The major
axis of the ellipse always runs along the line of bearing. The bearing is a measure in
degrees from True North.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is

172

added as a member.
RETURNS

The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid center, bearing, major axis, or minor axis was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

173

MDrawLine

FUNCTION
Draw a line.

SYNTAX
C Interface

ObjectId MDrawLine(channel, template, point1, point2) Channel channel;
ObjectId template;
MapPoint *p1;
MapPoint *p2;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the line segment.

p1 An endpoint for placing the line segment.

p2 An endpoint for placing the line segment.

DESCRIPTION
The MDrawLine function draws a line segment in the specified window.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

174

MDrawPolyLine

FUNCTION
Draw a multiple segment line.

SYNTAX
C Interface

ObjectId MDrawPolyLine(channel, template, points, npoints)
Channel channel;
ObjectId template;
MapPoint *points;
int npoints;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the line.

points A pointer to an array of points.

npoints The number of points in the array.

DESCRIPTION
The MDrawPolyLine function draws a polyline in the specified window.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError

175

An invalid point was specified.
SEE ALSO

MObjAtts(3C), MDestroyObject(3C),

176

MDrawPolygon

FUNCTION
Draw a polygon.

SYNTAX
C Interface

ObjectId MDrawPolygon(channel, template, points, npoints)
Channel channel;
ObjectId template;
MapPoint *points;
int npoints;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the polygon.

points A pointer to an array of points.

npoints The number of points in the array.

DESCRIPTION
The MDrawPolygon function draws a polygon in the specified window. This routine
works the same as MDrawPolyline except that it closes the polygon by adding the first
point to the end of the polygon, and that a Polygon can be filled.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

177

BadValueError
An invalid point was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C),

178

MDrawRectangle

FUNCTION
Draw a rectangle.

SYNTAX
C Interface

ObjectId MDrawRectangle(channel, template, p1, p2) Channel channel;
ObjectId template;
MapPoint *p1;
MapPoint *p2;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the rectangle.

p1 The upper left hand corner of the rectangle.

p2 The lower right hand corner of the rectangle.

DESCRIPTION
The MDrawRectangle function draws a rectangle in the specified window. The function
will be drawn according to the line_style field of the ObjectAttributes structure. The line
can be drawn as one of three types: GreatCircle, RhumbLine, or GeoDesic. The default
line type is GeoDesic, which connects the two points with a straight line on the screen.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

179

BadValueError
An invalid point was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

180

MDrawSector

FUNCTION
Draw a sector.

SYNTAX
C Interface

ObjectId MDrawSector(channel, template, center, bear ing, range1, range2,
angle1, angle2)

Channel channel;
ObjectId template;
MapPoint *center;
FLOAT bearing;
FLOAT range1;
FLOAT range2;
FLOAT angle1;
FLOAT angle2;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

template A reference to ObjectAttributes used for drawing the Sector.

center The center point of the arc, in decimal degrees.

bearing The bearing of the major axis from true north in
degrees.

range1 The radius of the first arc in nautical miles.
range2 The radius of second arc in nautical miles.
angle1 The start of the arc in degrees from true north.
angle2 The extent of the arc in degrees from true north.

DESCRIPTION
The MDrawSector function draws two circular arcs connected by line segments. Both
arcs are drawn with the same center point, are drawn through the same angular range,
and have

radii of range1 and range2. The two arcs are connected by line segements.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

181

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid value for one of the arc parameters was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

182

MDrawSegment

FUNCTION
Draw a segment.

SYNTAX
C Interface

ObjectId MDrawSegment(channel, template, location, bearing, length)
Channel channel;
ObjectId template;
MapPoint *location;
FLOAT bearing;
int length;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the line segment.

location The location to place the segment. This location specifies the starting point for
the line segment to be drawn.

bearing The bearing of the segment in degrees from true
north.

length The length of the segment in pixels.

DESCRIPTION
The MDrawSegment function draws a segment in the specified window. A segment is a
line with a fixed length. The length is specified in pixels, not nautical miles. This causes
the segment to remain a fixed size regardless of the scale of the map. The segment is
drawn based on a bearing in degress from North. The length and bearing of a segment can
be changed without having to destroy and recreate it using the function MSetSegment.
The MDrawSlash call is similar, with only subtle differences.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is

added as a member.
RETURNS

183

The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid location, bearing, or range was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C), MDrawSlash(3C), MSetOffset(3C),
MSetSegment(3C)

184

MDrawSlash

FUNCTION
Draw a slash.

SYNTAX
C Interface

ObjectId MDrawSlash(channel, template, location, bear ing, length)
Channel channel;
ObjectId template;
MapPoint *location;
FLOAT bearing;
int length;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the slash.

location The location to place the slash; the drawn line will be centered around this point.

bearing The bearing of the slash in degrees from true
north.

length The length of the slash in pixels.

DESCRIPTION
The MDrawSlash function draws a slash in the specified window. A slash is a line with a
fixed length. The length is specified in pixels, not nautical miles. This causes the slash to
remain a fixed size regardless of the scale of the map. The slash is drawn based on a
bearing in degress from North. Slash segments differ from line segments drawn by the
MDrawSegment call in the following ways:

(1). The slash line is drawn with the specified location as the line's center point. The
segment line is draw with the specified location as the line's starting point.

(2). A slash line cannot be moved using the MSetSegment
call.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template

185

is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid location, bearing, or range was specified.

SEE ALSO
MDestroyObject(3C), MDrawSegment(3C), MObjAtts(3C),
MSetOffset(3C)

186

MDrawSymbol

FUNCTION
Draw a symbol.

SYNTAX
C Interface

#include <M/Symbols.h>
ObjectId MDrawSymbol(channel, template, symbol, size, location)

Channel channel;
ObjectId template;
NTDSSymbol symbol;
int size;
MapPoint *location;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the symbol.

symbol The NTDS symbol to be drawn.

size The NTDS symbol font size to be drawn. Valid
values are: Tiny, Small, Medium, Large, Huge, TinyBold, SmallBold,
MediumBold, LargeBold, Huge Bold.

location The center point of the symbol to be drawn.

DESCRIPTION
The MDrawSymbol function draws a symbol in the specified window. This routine draws
a symbol centered about the specified center point. The symbol must be one of the ele-
ments of the NTDS font. Most symbols in this font have predefined constants for the
characters to add to a program's readability. The list of constants are referenced by
including the file <M/Symbols.h>.

The symbols to be drawn can be of different sizes by modifying the size parameter. The
template will affect the color of the symbol that is drawn; however, the font used by this

command is preselected (ie. the template font attribute is ignored). The MDrawChar()
and MDrawChar16() functions are more general purpose.

187

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

FONT INFORMATION
Cartographer Manager provides a set of symbols for drawing symbolic information onto
the map. These symbols are located in defined 16 bit character fonts, and can be drawn
using either the MDrawSymbol() or the MDrawChar16() calls. The predefined constants
used by the MDrawSymbol() call map out to the following font names:

Tiny
-chart-ntds-medium-r-normal--13-130-7575-m-130-iso8859-1

Small
-chart-ntds-medium-r-normal--21-210-7575-m-210-iso8859-1

Medium
-chart-ntds-medium-r-normal--31-310-7575-m-310-iso8859-1

Large
-chart-ntds-medium-r-normal--41-410-7575-m-410-iso8859-1

Huge
-chart-ntds-medium-r-normal--51-510-7575-m-510-iso8859-1

TinyBold -chart-ntds-bold-r-normal--13-130-75-75-m-130-iso8859-1

SmallBold -chart-ntds-bold-r-normal--21-210-75-75-m-210-iso8859-1

MediumBold -chart-ntds-bold-r-normal--31-310-75-75-m-310-iso8859-1

LargeBold -chart-ntds-bold-r-normal--41-410-75-75-m-410-iso8859-1

HugeBold -chart-ntds-bold-r-normal--51-510-75-75-m-510-iso8859-1

Note: these fonts must be installed prior to attempting to use them. In the event that the
font cannot be loaded, a substitute (text) font is used instead.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

STRUCTURES
C Interface

The NTDSSymbol construct is used for specifying predefined symbols from the
NTDS font sets. Each NTDS character has a unique identifier constant defined in

188

the include file <M/Symbols.h>.

typedef int NTDSSymbol;

BadChannel
An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid symbol, size, or location was specified.

SEE ALSO
MChangeSymbol(3C), MDestroyObject(3C), MObjAtts(3C), MSetOffset(3C),
MSetSymbolSize(3C)

189

MDrawText

FUNCTION
Draw text.

SYNTAX
C Interface

ObjectId MDrawText(channel, template, text, ntext, location, x offset, y offset)
Channel channel;
ObjectId template;
char *text;
int ntext;
MapPoint *location;
int x offset;

int y offset;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the text string.

text Specifies the text to be drawn.

ntext The number of characters in the string to be
drawn.

location Specifies the location of the text to be placed in the window.

x offset The offset in pixels from the center point for the text.

y offset The offset in pixels from the center point for the text.

DESCRIPTION
The MDrawText function draws a text string in the specified window. The text will be
drawn with the font specified in its attributes. The text is positioned at the pixel offset
specified by x offset and y offset, from the center point specified.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

190

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadValueError
An invalid location or offset was specified.

SEE ALSO
MChangeText(3C), MDrawAngleText(3C), MDestroyObject(3C),

MObjAtts(3C), MSetOffset(3C)

191

MDrawWeather

FUNCTION
Draw a weather segment.

SYNTAX
C Interface

ObjectId MDrawWeather(channel, template, front type, points, npoints)
Channel channel;
ObjectId template;
FrontType front type;

MapPoint *points;
int npoints;

ARGUMENTS

channel Specifies the connection to Cartographer; returned
from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the line.

front type
Specifies what type of front is to be drawn.

points A pointer to an array of points.

npoints The number of points in the array.

DESCRIPTION
The MDrawWeather function draws a weather line to the specified window. Valid
FrontTypes are: WarmFront, ColdFront, OccludedFront, and StationaryFront.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
is a List or a Class, the newly created object is added as a member.

RETURNS
The ObjectId value of the created object. The value Invali dObjectId is returned if the
call fails.

ERRORS

192

BadChannel

An invalid channel id was used.
BadObjectId

An invalid template id was used.

BadValueError
An invalid point was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C),

193

MDrawWorld

FUNCTION
Draw a world view map in specified window.

SYNTAX
C Interface

void MDrawWorld(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

window The window to which the map draw is directed.

DESCRIPTION
MDrawWorld draws a world view map to the given window. The projection, feature, and
color models remain unchanged. The product list is based on the current set of map
products, modified by setting the subtype fields to AnyMap. This allows products in the
given class which are displayable at world view to be loaded in. If no products can be
drawn from the current set, then the default set (VectorMap class, AnyMap subtype) is
displayed.

ERRORS
SEE ALSO

n/a

194

MError

FUNCTION
Cartographer Manager error handling routines.

SYNTAX
C Interface

#include <M/Merror.h>
void MSetErrorHandler(handler)

MapErrorProc handler;

void MResetErrorHandler()

void MSetIOErrorHandler(handler) MapIOErrorProc handler;

void MResetIOErrorHandler()

char *MErrorToString(error code) MapStatus error code;

#include <M/Mproto.h>

char *MMajorCodeToString(major code) Protocol major code;

char *MMinorCodeToString(minor code) Protocol minor code;

ARGUMENTS

handler An application specific error handler.

error code
The code number of the generated error. Error codes are described in each
Chart Manager manual page under the "ERRORS" heading.

major code
The major code number of the generated error.

minor code
The minor code code number of the generated error.

DESCRIPTION
The Chart Manager Library has two asynchronous error handler routines that are called
whenever an error occurs within the Chart Manager. One handler deals exclusively with
IO errors and the other handles all other errors. Both error handlers can be replaced with
user-defined handlers by using the routines MSetIOErrorHandler and MSetErrorHandler.
Once the error handler is replaced by a user routine, the user routine will be called

195

whenever an error occurs. The default handlers that the library defines can be restored
with the

routines: MResetIOErrorHandler and MResetErrorHandler. The Chart Manager error
service provides a default handler which prints a message to the standard error device for
all non-IO errors. This handler is also called if your client's error handler returns a non-
zero value. The application can substitute its own routine in lieu of the default routine by
using the MSetErrorHandler routine. Available to the user are three routines for
converting internal Chart Manager codes to strings. These routines are: MErrorToString,
MMa jorCodeToString, and MMinorCodeToString.

The MErrorToString routine provides a small text description for each error code, the
MMajorCodeToString routine provides a text description for each major protocol code in
the Chart Manager, and the MMinorCodeToString routine provides a text description for
each minor protocol code in the Chart Manager. All three routines return the text string
"Unknown" in the case where the input code is not defined by the Chart Manager. All
three routines return pointers to static string buffers which should not be modified by the
caller.

The application error handler routine is called with the following format whenever a Chart
Manager error occurs:

int
(*handler) (channel, window, major code, minor code, error code,
error info)

Channel channel;
WindowId window;
Protocol major code;

Protocol minor code;
MapStatus error code; MapErrorCodeInformation *error info;

The channel indicates the channel over which the error
occurred. channel is set to InvalidChannel if the call generating the error has no associated direct
communications with the Chart Manager.

The window parameter indicates the map window generating the error. window is set to
InvalidWindowId if the call generating the error has no associated map window.
Examples of such calls include MOpenChannel.

The major code and minor code can be used by the application to handle errors for a
specific Chart Manager request. The error code parameter can be used by the application
to handle specific errors. The error info is returned along with some errors (specifically

196

map related errors), to specify

additional information concerning the error. If the passed argument is non-NULL, then
the information takes the form of a MapErrorCodeInformation structure (specified in the
STRUCTURES section below).

The MResetErrorHandler call resets the error handler back to the default error handler.

The IO error handler prints the same information as the default error handler, it also
causes the program to exit after ther message is printed. An IO error will be fatal and
must be handled by the Client program in order for execution to continue. There
parameters to the IO error handler are the same except that there is no window parameter.

RETURN
Certain error routines return a string value. This value is statically assigned, and should
NOT need to be freed using free. Your library error handler, specified using the
MSetErrorHandler() call, should return the value 0 if the error was processed, and the
value non-zero if it was not. In the case where the error is not processed, the default error
handler is called, and an error message is printed to the standard error (stderr) device.

STRUCTURES
C Interface

typedef int MapStatus;

typedef short Protocol;

typedef int (*MapErrorProc)(
Channel channel,
WindowId window,
Protocol major_code,
Protocol minor_code,
MapStatus error_code,

MapErrorCodeInformation *error_info);

typedef void (*MapIOErrorProc)(
Channel channel,
Protocol major_code,
Protocol minor_code,

MapStatus error_code);

typedef struct {
MapType map_type;

MapSubType sub_type;
FeatureType feature_type; FeatureSubType feature_subtype;
ProjectionType projection;

197

} MapErrorCodeInformation;

The Protocol value is used to uniquely determine the M library request generating the
error. The MapStatus value classifies an error. The VALUES section of this manual page
describes all possible values for MapStatus. The MapEr rorProc is the name of a
procedure which gets called if an error occurs. The MapIOErrorProc is the name of a
procedure which gets called if an I/O error occurs. Note that both procedures have
parameter definitions included if your C compiler supports this.

The MapErrorCodeInformation structure provides further information for certain kinds of
errors. The fields in this structure are defined as follows:

map_type
This field indicates the type of map product causing the error. These values are
internally encoded. Values depend upon the Draw Modules currently connected to
the Chart Manager. This field is set to the value AnyMap if the cause of the error
is due to a feature product, and not a map product.

sub_type
This field indicates the subtype of map product causing the error, given a specific
map type. Similar to the map type field, this field is internally encoded.

projection
This field indicates the projection causing the error. This field is internally encoded.
This field specifies the name of the unsupported projection, for example, when a
ProjectionNotSupported error occurs.

feature_type
This field indicates the type of feature product causing the error. These values are
internally encoded. Values depend upon the Draw Modules currently connected to
the Chart Manager. This field is set to the value AnyFeature if the cause of the
error is due to a map product, and not a feature product.

feature_subtype
This field indicates the subtype of feature product causing the error, given a
specific feature type. Similar to the feature type field, this field is internally
encoded.

VALUES
MapStatus

AlreadyConnected
The connection to the specified Chart Manager already exists. See
MOpenChannel(3C).

AlreadyDrawingMap

198

A map draw request for the specified window is already in progress.

BadChannel
The specified channel is invalid.

BadDisplay
The referenced display is no longer valid. This can occur if a remote X
server exits while Chart Manager has a window to it still defined.

BadMapEntry

BadObjectId
The specified object is invalid, or does not exist.

BadOwner
The specified application is attempting to use a map window without
having previously performed a MUseWindow or MUseNamedWindow
call.

BadRecord
The specified record in a particular file is invalid.

BadServer
A request is being made to draw a map whose responsible Draw Module
has terminated.

BadTemplate
The specified template is invalid, or no longer exists.

BadValueError
The specified value is invalid for the given call.

BadVolume
The specified volume path does not exist, or else it cannot be read.

BadWindowId
The specified window is invalid, or has been previously deleted.

BadWindowName
The specified window name does not exist, or else

is invalid. See MUseNamedW(3Map).
DataSyncError

The Client/Manager protocol is out of sync. Some data may have been
lost.

ErrorDrawingFeature
ErrorDrawingMap

199

FeatureNotAvailable
FeatureNotSupported
HardwareNotSupported
MapDrawAborted
MapNotFound
MapTooSmall
MaxExtents
MaxScale
MinScale
NoError

No error defined.

NoMapsDrawn

NotEnoughColors

OutOfMemory
The Chart Manager has run out of memory. This usually occurs because of
a failure in the mal loc(3) call.

ProductNotFound

ProjectionNotSupported

SocketError
An exception occurred on the specified socket. This is generally the error
code seen by an M library I/O handler.

SystemNotSupported

TooManyEvents
The Chart Manager event queue is full. The event which caused this had to
be thrown away.

TooManyMaps

UnresponsiveDrawModule

UnknownError
The specified error is undefined.

WorldFitProblem

SEE ALSO
MOpenChannel(3C), MUseWindow(3C), MUseNamedWindow(3C), malloc(3), stdio(3),

200

ERRORS section under each application call.

201

MExchangeObject

FUNCTION
Exchange an object between one class or list and another class or list.

SYNTAX
C Interface

void MExchangeObject(channel, object, oldclass, newclass, atts mask)

Channel channel;
ObjectId object;

ObjectId oldclass;
ObjectId newclass;

MapValueMask atts mask;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The object being moved from one class or list to
another class or list.

oldclass The list or class from which the object will be
removed.

newclass The list or class to which the object will be
added.

atts mask The object attributes mask to apply when applying the newclass object attributes
to object.

DESCRIPTION
MExchangeObject moves the specified object from one class or list to another class or list.
After performing the exchange, the new class's attributes are applied to the object using
the specified object attributes mask. Note that object can be any one of type class,
drawable or list, but object cannot be of type template.

ERRORS
BadChannel

An invalid channel id was used.
BadObjectId

202

An invalid object id was used.
SEE ALSO

MAddObject(3C), MDestroyList(3C), MDestroyObject(3C),
MRemoveObject(3C)

203

MFlush

FUNCTION
Flush the output buffer.

SYNTAX
C Interface

void MFlush(channel)
Channel channel;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

DESCRIPTION
MFlush flushes the output buffer, causing all buffered

requests to be sent to Cartographer.

ERRORS
BadChannel

An invalid channel id was used.

SEE ALSO
MOpenChannel(3C), MCloseChannel(3C) MSync(3C)

204

MFlushAllEvents

FUNCTION
Flush the event queues for all channels.

SYNTAX
C Interface

void MFlushAllEvents()

DESCRIPTION
MFlushAllEvents removes all of the events from the input queue. This includes all events
received from the Chart Manager, as well as all events placed on the queue by MPut
BackEvent.

MFlushAllEvents differs from MFlush because MFlushAllEvents flushes the events on all
channels which this application is connected to, whereas MFlush flushes the requests to a
specific Chart Manager.

SEE ALSO
MFlush(3C), MNextEvent(3C), MPending(3C)

205

MGetProjectionData

FUNCTION
Retrieve the projection data structure in use for the window coordinate system.

SYNTAX
C Interface

MapStatus MGetProjectionData(channel, window, pd) Channel channel;
WindowId window;
ProjectionData *pd;

ARGUMENTS

channel The connection to the Chart Manager; returned from
MOpenChannel.

window The window Id of the window to query.

pd The projection data structure currently in use for
the window.

DESCRIPTION
The MGetProjectionData routine retrieves the current projection data structure for the
given window. The routine returns NoError when a valid projection data structure is
retrieved and filled in. Normal cases of coordinate conversion should use the calls
MPositionToPixels and MPixelsToPo sition.

RETURN
The function returns a status value indicating whether or

not the data structure was retrievable. A status of NoError indicates that the retrieval was
successful.

ERRORS
BadChannel

An invalid channel or window was specified.

BadValueError
A convert data structure could not be retrieved because the pointer passed is
invalid.

SEE ALSO
MPixelsToPosition(3C), MPositionToPixels(3C)

206

MGetSearchPath

FUNCTION
Get the current map search path.

SYNTAX
C Interface

char **MGetSearchPath(channel, npaths)
Channel channel;
int *npaths;

ARGUMENTS
channel Specifies the connection to Chart returned by

MOpenChannel.

npaths Assigned the number of map search paths in the
list.

DESCRIPTION
The MGetSearchPath returns the current search path the Chart Server is using to get its
list of maps for display. The list is returned, along with the number of paths in the list.
The space for the path list, and each individual path were allocated using malloc(), and
should be freed using free().

ERRORS
BadChannel

An invalid channel id was used.

BadVolume
The specified volume is invalid.

SEE ALSO
MReloadSearchPath(3Map), MAddVolume(3Map), MRemoveVolume(3Map),

207

MGetServiceContext

FUNCTION
Get copy of service context used by M library.

SYNTAX
ServiceContext MGetServiceContext()

DESCRIPTION
The MGetServiceContext routine returns a reference to the ServiceContext used by the M
library. If the library has not yet been initialized, initialization takes place prior to
returning to the caller. The ServiceContext can be used directly in any library calls
requiring a ServiceContext parameter.

208

MGetXWindow

FUNCTION
Return the X Window ID of a geographic display window.

SYNTAX
C Interface

int MGetXWindow(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Chart; returned from

MOpenChannel.

window Specifies the window whose ID is to be returned.

DESCRIPTION
The MGetXWindow function returns the X Window ID of the specified geographic
display window. The Chart Manager Window ID and X Server Window ID are unique
and different numbers. The Chart Manager Window ID is used to reference a particular
window created in Chart. The X Window ID can be used to resize, move, reparent, etc.,
the X Window containing the geographic display. This function is usually only necessary
if a window is to be reparented.

RETURNS
An X Windows Window identifier for the map widget.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

SEE ALSO
MCreateWindow(3Map), XCreateWindow(3X11)

209

MKillServer

FUNCTION
Shut down Chart.

SYNTAX
C Interface

void MKillServer(channel, kill code)
Channel channel;
int kill code;

ARGUMENTS
channel The connection to Chart; returned from MOpenChan

nel.

kill code A security code that must match the code within
Chart.

DESCRIPTION
MKillServer causes Chart to shut down. All connections will be closed, and all windows
will be destroyed. The Chart Manager will not quit unless the security code contained in
kill code matches the code within Chart.

ERRORS
BadChannel

The channel id was invalid.

SEE ALSO
MOpenChannel(3C), MCloseChannel(3C)

210

MListFeatures

FUNCTION
List the features available on the Chart Manager.

SYNTAX
C Interface

FeatureListAttributes *MListFeatures(channel, feature type , sub type, nfeatures)

Channel channel; FeatureType feature type; FeatureSubType sub
type;

int *nfeatures; /* RETURN */

ARGUMENTS
channel

The connection to the Chart Manager; returned from MOpenChannel.

feature type
The feature type filter for the List of Features. The internal constant
AnyFeature will list all features regardless of type.

sub type The sub type filter for the List of Features. The internal constant AnyFeature
will list all features regardless of their sub types.

nfeatures The number of records returned from the call, and a corresponding number of
records is referenced by the FeatureListAttributes pointer.

DESCRIPTION
The MListFeatures function Lists all of the features that

are available in the Chart Manager. The Chart Manager filters the feature list based on the
parameters that are passed to it. The wild card AnyFeature can be used to match all
feature types.

The information returned by MListFeatures can be used by a Client to display one of the
features. The boundary points returned represent the boundary points for the feature as a
whole. These will be different values in order for the feature to be displayed in a window.
Each

FeatureListAttributes record also returns a set of FeatureAttributes These attributes are
the default attributes used by the Draw Module responsible for rendering the feature.

If an error occurs during the query NULL is returned and

211

nfeatures will be 0.
In the C Version, the memory allocated to store the list of features must be freed by the
Client program via a call to MFree.
The feature type and sub type fields should either derive their values from the
MuReference(3Mu) routines, or else be set to the constant AnyFeature. Note: this
constant cannot be statically assigned.

RETURN
C Interface

A pointer to an array of map structures is returned, with the number of elements in
the structure returned in nfeatures. On failure NULL is returned.

STRUCTURES
C Interface

typedef unsigned int FeatureType;
typedef unsigned int FeatureSubType;

typedef struct {
FeatureType feature_type;
FeatureSubType sub_type;

} FeatureProduct;

typedef struct {
short line_width;
short fill_weight;
short fill_offset;
short priority;
MapColor color;
MapFillType fill_type;
MapLineStyle line_style;
Boolean show_border;
Boolean show_bgrd;
FLOAT upper_width;

char font_name[FONT_

212

NAME_LENGTH];

} FeatureAttributes;
typedef struct _FeatureListAttributes { FeatureProduct type;

MapLabelAttributes label;
FeatureAttributes defaults;
MapLocationAttributes location;

} FeatureListAttributes;

The fields within the FeatureListAttributes
structure are described below:

type
A FeatureProduct structure specification which is used to uniquely specify the
feature product. This information can be used by itself to request that the feature
be drawn (say within a MAddFeature(3Map) or MChangeMap(3Map) call. This
structure contains the following elements:

feature_type
This field indicates the type of feature product to be displayed. These
values are internally encoded, and can be referenced using the
MuReference(3Mu) utilities. Valid values depend upon the Draw Modules
currently connected to the Chart Manager.

sub_type
This field indicates the subfeature to be displayed, given a specific feature
type. Similar to the feature type field, this field is internally encoded, and
can be referenced using the MuReference(3Mu) utilities.

label
A MapLabelAttributes structure which contains information describing the map
product and its coverage. The values contained in this structure are free text
values, but generally contain the following information:

name
The place name for the feature, such as "California Roads".

label
A free text field which contains any special comments concerning this
feature.

filename
The name of the file where the data header is
located. This is generally the location of the feature data as well.

location

213

A MapLocateAttributes structure describing the coverage of the given feature
product. The fields are described as follows:

center
The lat/long value of center point of the feature, as it exists in the database.

top_left
The lat/long value of the top left corner of the feature, as it exists in the
database.

bottom_right
The lat/long value of the lower right corner of the feature, as it exists in the
database.

supported_projections
A list of projections under which the Draw Module drawing this product
can render it. The list may include the value AnyProjection.

num_projections
The number of projections that are supported for the rendering of this
feature product. This value is the number of valid items in the
supported projections field described above.

scale_recommend
The recommended scale of the feature. The units for this are nautical miles
per pixel. This allows all features to be referenced the same way. This
value can be used to do rough calculations for items on the screen, but
should not be counted on to be accurate as all projections are not
necessarily linear.

scale_upper
The upper scale for the feature. The units for this are nautical miles per
pixel. This is the largest scale supported by the associated Draw Module
rendering the product. Requests to draw the feature larger result in a
MaxScale error.

scale_lower
The lower scale for the feature. The units for this are nautical miles per
pixel. This is the smallest scale at which the feature will be drawn.
Requests to draw the feature smaller result in a

MinScale error.
defaults

A default set of rendering attributes which can be used as a basis for modifying the
way in which the feature gets rendered. For a detailed description of each item in
the FeatureAttributes structure, refer to the MFeatAtts(3Map) man page.

214

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id used was invalid.

OutOfMemory
Unable to allocate the memory to store the data.

SEE ALSO
MChangeMap(3Map), MListMaps(3Map), MQueryFeatures(3Map)

215

MListMaps

FUNCTION
List the maps available in the Chart Manager.

SYNTAX
C Interface

MapListAttributes *MListMaps(channel, ul, lr, map type , sub type, nmaps)
Channel channel;
MapPoint *ul;
MapPoint *lr;
MapType map type;

MapSubType map subtype;
int *nmaps; /* RETURN */

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

ul, lr
The location filter for the List of maps. Only those maps that lie within this
boundary are listed. The ul is the upper left point of the bounding box, and the lr
is lower right point of the bounding box. To list all maps regardless of the area
coverted, set either of the ul or lr fields to the value NULL, or set the elevation
field of either point to -1.0.

map type The map type filter for the List of Maps. The internal constant AnyMap will list
all maps regardless of type.

sub type The sub type filter for the List of Maps. The internal constant AnyMap will list
all maps regardless of their sub types.

nmaps The number of maps contained in the MapList.

DESCRIPTION
The MListMaps function Lists all of the Maps that are available in the Chart Manager.
The Chart Manager filters the map list based on the parameters that are passed to it. The
wild card AnyMap can be used to match all map types. Also,

a NULL pointer, or an elevation value of -1.0 for the center point can be used as a wild
card for center point. This will cause the Chart Manager to match all maps regardless of
the area that they cover.

216

The information returned by MListMaps can be used by a Client to display one of the
maps. The boundary points returned represent the boundary points for the map as a
whole. These will be different values in order for the map to be displayed in a window. It
is best to use the
scale recommend value if this information is to be used in a MChangeMap call. This
eliminates the need for the Client program to calculate the boundary points, and worry
about correct map aspect ratios.

If an error occurs during the query NULL is returned.

In the C Version, the memory allocated to store the List of Maps must be freed by the
Client program via a call to MFree.

RETURN
C Interface

A pointer to an array of map structures is returned, with the number of elements in
the structure returned in nmaps. On failure NULL is returned.

STRUCTURES
C Interface

typedef unsigned int MapType;

typedef unsigned int MapSubType;

typedef struct {

MapType map_type;
MapSubType sub_type;

} MapProduct;

typedef struct _MapLabelAttributes {

char name[

NAME_LENGTH + 1];
char label[LABEL_LENGTH + 1];

char filename[FILE

NAME_LENGTH + 1];
} MapLabelAttributes, *MapLabelAttributesList;

217

typedef struct _MapLocationAttributes {
MapPoint center;
MapPoint top_left;
MapPoint bottom_right;
FLOAT scale_upper;
FLOAT scale_lower;
FLOAT scale_recommend;
ProjectionType supported_projections[NUM_PROJECTIONS]; int
num_projections;

} MapLocationAttributes, *MapLocationAttributesList;

typedef struct _MapListAttributes {
MapProduct type;
MapLabelAttributes label;
MapLocationAttributes location;

} MapListAttributes, *MapListAttributesList;

The fields within the MapListAttributes structure are
described below:

type
A MapProduct structure specification which is used to uniquely specify the map
product. In conjunction with the MapLocateAttributes structure, draw requests
are formed based upon this information. This structure contains the following
elements:

map_type
This field indicates the type of map product to be displayed. These values
are internally encoded, and can be referenced using the MuReference(3Mu)
utilities. Valid values depend upon the Draw Modules currently connected
to the Chart Manager.

sub_type
This field indicates the subtype of product to be displayed, given a specific
map type. Similar to the map type field, this field is internally encoded, and
can be referenced using the MuReference(3Mu) utilities.

label
A MapLabelAttributes structure which contains information describing the map
product and its coverage. The values contained in this structure are free text
values, but generally contain the following information:

name

218

The place name for the map, such as "Camp Pendleton, California".

label
A free text field which contains any special comments concerning this map.

filename
The name of the file where the data header is

located. This is generally the location of the map data as well.

location
A MapLocateAttributes structure describing the coverage of the given map
product. The fields are described as follows:

center
The lat/long value of center point of the map, as it exists in the database.

top_left
The lat/long value of the top left corner of the map, as it exists in the
database.

bottom_right
The lat/long value of the lower right corner of the map, as it exists in the
database.

supported_projections
A list of projections under which the Draw Module drawing this product
can render it. The list may include the value AnyProjection.

num_projections
The number of projections that are supported for the rendering of this map
product. This value is the number of valid items in the
supported projections field described above.

scale_recommend
The recommended scale of the map. The units for this are nautical miles
per pixel. This allows all maps to be referenced the same way. This value
can be used to do rough calculations for items on the screen, but should
not be counted on to be accurate as all projections are not necessarily
linear.

scale_upper
The upper scale for the map. The units for this are nautical miles per pixel.
This is the largest scale supported by the associated map generator
product. Requests to draw the map larger are not complied with.

scale_lower
The lower scale for the map. The units for this are nautical miles per pixel.

219

This is the smallest scale at which the map will be drawn. Requests to draw
the map smaller are not complied

with.
ERRORS

BadChannel
An invalid channel id was used.

BadWindowId
The window id used was invalid.

OutOfMemory
Unable to allocate the memory to store the data.

SEE ALSO
MChangeMap(3Map), MQueryMap(3Map)

220

MListObjects

FUNCTION
Object search utility.

SYNTAX
C Interface

ObjectListAttributes *MListObjects(channel, atts , mask, nobjects)
Channel channel;

ObjectListSearchAttributes *atts;
MapValueMask mask;
int *nobjects; /* RETURN */

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

search atts
The criterea used in the search of the Chart Manager object database.

mask A value mask used to specify those fields in the
search criterea which are of interest to the Chart Client.

nobjects The number of records returned from the call, and a corresponding number of
records is referenced by the ObjectListAttributes pointer. In the C Version
this pointer is returned as a value by the function, the Ada Version returns
this pointer as one of the parameters.

DESCRIPTION
The MListObjects function lists all of the objects that are available in the Chart Manager.
The Chart Manager filters the object list based on the search criteria that is passed to it.

The information returned by MListObjects can be used by a Client to query or modify one
of the objects. If an error occurs during the query NULL is returned.

In the C Version, the memory allocated to store the list of objects must be freed by the
Client program via a call to MFree.

RETURN
A pointer to an array of ObjectListAttributes structures is returned, with the number of
elements in the structure returned in nobjects. On failure NULL is returned.

221

STRUCTURES
C Interface

typedef int ObjectType;
typedef int ObjectSubType;
typedef int ObjectId;
typedef struct {

ObjectType type;
ObjectSubType subtype;
ObjectId class;
ObjectId list;

MapPoint region[2];
WindowId window;
Boolean pickability;
Boolean visibility;
} ObjectListSearchAttributes;

typedef struct {

ObjectId id;
char *data;
} ObjectListAttributes;

ERRORS
BadChannel

An invalid channel id was used.

BadValueError
Invalid search criterea specified.

OutOfMemory
Unable to allocate the memory to store the data.

SEE ALSO
MFree(3Map), MQueryObj(3Map)

222

MMainLoop

FUNCTION
Process input on sockets.

SYNTAX
void MMainLoop()

DESCRIPTION
The MMainLoop blocks input until it receives a set of descriptors, and then calls the
appropriate routines.

223

MMapWindow

FUNCTION
Map a window to the screen.

SYNTAX
C Interface

void MMapWindow(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window Specifies the window id.

DESCRIPTION
The MMapWindow maps a window in Cartographer to the screen. Once created, a
window will not be visible until it is mapped to the screen.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

SEE ALSO
MCreateMapWindow(3C), MUnMapWindow(3C), MDestroyWindow(3C)

224

MMemory

FUNCTION
Chart Manager memory allocation utilities.

SYNTAX
C Interface

char *MAlloc(size)
unsigned int size;

char *MReAlloc(ptr, size)
char *ptr;
unsigned int size;

void MFree(ptrtoptr)
char **ptrtoptr;

ARGUMENTS
size The size (in bytes) of the space to be allocated

(or reallocated).

ptr A pointer to the space which has already been
allocated.

ptrtoptr A pointer to the pointer to the space which has
been allocated. This is used by MFree() in lieu of simply passing ptr so that
the address pointer then can be set to NULL. This prevents multiple calls
to MFree() from freeing the same address twice, which can produce
unpredictable (and sometimes hard to find) results.

DESCRIPTION
The MMemory calls provide a mechanism for allocating and freeing memory. They are
used only with the C interface.

MReAlloc() reallocates the memory block pointed to by ptr to be size bytes. If size is
greater than the block's previous size, then the contents pointed to by ptr are copied to the
new block. If size is smaller than the block's previous size, then size bytes of the contents
pointed to by ptr are copied to the new block. In either case, the space pointed to by ptr is
then freed. MReAlloc() returns NULL in cases where the allocation fails.

MFree() frees up a block of memory which was allocated by MAlloc() or MReAlloc().
Note that the parameter passed to MFree() is the address of the block pointer, rather than
the address of the block itself. Once the block is freed the block pointer address is set to
NULL. Then if MFree() is called again with the same block pointer address, it will
prevent freeing the same block twice, which can lead to unpredictable results.

225

MDebug discusses some debugging features which are available with the MMemory
routines.

RETURN
Both MAlloc and MReAlloc return a pointer to the newly allocated space. They return
NULL if the call fails for some reason.

SEE ALSO
MDebug(3Map)

226

MModifyFeature

FUNCTION
Modify feature attributes on a map.

SYNTAX
C Interface

void MModifyFeature(channel, window, feature, mode) Channel channel;
WindowId window;

MapFeatureAttributes *feature;
ModificationMode mode;

ARGUMENTS

channel The connection to the Chart Manager; returned from
MOpenChannel.

window The window on which the feature is to be
displayed.

feature A map feature whose attributes are to be modified.
See MFeatAtts(3Map) for information on this structure's contents.

mode The mode to use when modifying the feature attri-
butes. The mode can be one of four values: ModifyAnd, ModifyOr,
ModifyXor, and ModifySet. See MModifyFeatures(3Map) for more
information on this field.

DESCRIPTION
MModifyFeature modifies the drawing attributes of the specified feature onto the
currently drawn map. The effects of this call are not seen until the map gets redrawn.
Note that this call does not cause the map to redraw! Clients should use the
MUpdateFeatures call to see the changes take effect. Not all feature attributes have an
effect on the feature as it gets drawn. The effect of the feature attributes depends on the
Draw Module responsible for drawing the particular feature.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId

227

An invalid window id was used.

BadValueError
An invalid or non-existent feature value was specified. Also occurs if a bad
ModificationType is specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), MFeatAtts(3Map),
MFeatMask(3Map), MModifyFeatures(3Map), MRemoveFeature(3Map),
MRemoveFeatures(3Map), MuReference(3Mu)

228

MModifyFeatures

FUNCTION
Modify a list of feature attributes on a map.

SYNTAX
C Interface

void MModifyFeatures(channel, window, feature,
nfeatures, mode)

Channel channel;
WindowId window;

MapFeatureAttributes *feature;
int nfeatures;
ModificationMode mode;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the features are to be
displayed.

feature A list of map features whose attributes are to be
modified on the map. See MFeatAtts(3Map) for information on this
structure's contents.

nfeatures The number of map features being modified.

mode The mode to use when modifying the feature attri-
butes. The mode can be one of four values: ModifyAnd, ModifyOr,
ModifyXor, and ModifySet. See STRUCTURES section below for more
detail on each value.

DESCRIPTION
MModifyFeatures modifies the drawing attributes of the specified features onto the
currently drawn map. The effects of this command are not seen until the map is redrawn.
The client should call MUpdateFeatures() to see the effects of the modified feature
attributes. Not all feature attributes have an effect on the feature as it gets drawn. The
effect of the feature attributes depends on the Draw Module responsible for drawing the
particular feature.

229

STRUCTURES
C Interface

typedef int ModificationMode;

The ModificationMode is used to specify how a Chart Client modifies
FeatureAttributes for a feature already present on the display list. Four
modification types are permitted: ModifyAnd, ModifyOr, ModifyXor, and
ModifySet. Each of these affects the modification differently, depending on what
FeatureAttributes have been previously set using one of the M library calls which
affect a feature's display attributes.

The display list of features for a given map window is affected by the following
calls: MModifyFeature(), MModifyFeatures(), MAddFeature(), MAddFeatures(),
MRemoveFeature(), MRemoveFeatures(), and MChangeMap(). When a feature is
added to a geographic display using MAddFeature(s)() or MChangeMap(),it
features even if the feature is not currently viewable. Chart Clients can modify the
attributes used to render a viewable feature using the MModifyFeature() and MMo
 difyFeatures() calls.

A bitmask of FeatureAttributes is saved, along with the FeatureAttributes
themselves for each feature in the display list. This bitmask is simply a
representation of those features which have been supplied by a Chart Client, and
gets modified using the MModifyFeature(s)() calls. The ModificationMode
expresses how the attributes supplied in the current MModifyFeature(s)() call
affects the feature attributes on the display list.

For example, when set to ModifyAnd, only those feature attributes common to the
FeatureAttributes structure in the supplied command, and to the FeatureAttributes
structure in the display list, are updated.

The supported values for modification mode are the following:

ModifyAnd
ModifyAnd indicates that only those fields in the supplied FeatureAttri
butes which are in common with the current set of Client FeatureAttributes
are to be modified. The feature modification bitmask is not updated in this
case because no new fields are modified.

ModifyOr
ModifyOr indicates that those fields supplied in the FeatureAttributesfP
structure are to be

unconditionally modified. The feature attributes modification mask is
updated to indicate that these fields have been set by a Chart Client.

ModifyXor

230

ModifyXor indicates that only those fields which haven't been previously m
odified, and which are being modified now, are to be modified. The feature
attributes modification mask is updated to indicat that these fields have
been set by a Chart Client.

ModifySet
ModifySet is used to unconditionally set the FeatureAttributes to the
supplied values. The feature modification mask is set to the mask value
supplied with the FeatureAttributes in this call.

Note that fields within the FeatureAttributes structure which the Chart Client(s) fail to
specify take on their default values, which are usually supplied by the responsible
(rendering) Draw Module. For the most part, these values are the best combination of
attributes for rendering the particular feature. User customization is available, using these
calls, however.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid or non-existent feature value was specified. Also occurs if a bad
ModificationMode is specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), MFeatAtts(3Map),
MFeatMask(3Map), MModifyFeature(3Map), MRemoveFeature(3Map),
MRemoveFeatures(3Map), MuReference(3Mu)

231

MModifyObject

FUNCTION
Modify an already existing object through animation.

SYNTAX
C Interface

void MModifyObject(channel, object, animation type, flags, modifier)
Channel channel;
ObjectId object;
int animation type;
int flags;
int modifier;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel().

object Specifies the ID of the object to be modified.
This object must be a Drawable.

animation type
Specifies the type of modification desired on the object. Legal values for
this field depends on the object being modified. Possible values include:

DragObject
Move the entire object.

EndPoint
Moves an object's end point.

InsertLeg
Inserts a new line segment into the object.

MajorAxis
Modifies an object's major axis of rotation.

MinorAxis
Modifies an object's minor axis of rotation.

MoveVertex
Moves one of the object's vertices.

Size

232

Modifies an object's dimensions.
flags Object-specific modifier.
modifier Specifies a particular point, vertex, or leg of an object for certain modification

types.
DESCRIPTION

The MModifyObject() function will modify an object of the specified type using animation.
Valid objects which can be modified via animation include:

Arc
This function requires animation type to specify one of three possible modification
types: Size, EndPoint, or DragObject. In the case where animation type is set to
EndPoint, then modifier is set to one of the following :

0 - point at start of arc from true north
1 - point at extent of arc from true north

Box
This function requires animation type to specify one of two possible modification
types: Size or DragObject. In the case where animation type is set to Size, the
modifier value determines which corner of the rectangle is selected for
modification. In the case of a bearing value of 0 degrees, vertex 0 is the upper left
corner, vertex 1 is the upper right corner, vertex 2 is the lower right corner, and
vertex 3 is the lower left corner. In all cases the animation will insure that the
rectangular shape is retained.

Circle
This function requires animation type to specify one of two possible modification
types: Size or DragObject.

Ellipse
This function requires animation type to specify one of three possible modification
types: MajorAxis, MinorAxis, or DragObject.

Line
This function requires animation type to specify End Point, and for modifier to
specify 0 or 1 to indicate which endpoint should be modified.

Polygon
This function requires animation type to specify either InsertLeg or MoveVertex.
In either case, modifier is used for specifying which leg or vertex is to be

modified.
Polyline

This function requires animation type to specify either InsertLeg or MoveVertex.
In either case, modifier is used for specifying which leg or vertex is to be modified.

Rectangle

233

This function requires animation type to specify End Point, and for modifier to
specify 0, 1, 2 or 3 to indicate which endpoint on the rectangle should be modified.
Vertex 0 is considered to be the first point specified in the MDrawRectange() call,
or the first point clicked during a Rectangle object create.

Sector
This function requires animation type to specify one of two possible modification
types: EndPoint or DragOb ject. In the case where animation type is set to End
Point, then modifier is set to one of the following :

0 - point on inner radius at start of arc

1 - point on outer radius at start of arc 2 - point on outer radius at end of arc 3 -
point on inner radius at end of arc.

Text

This function requires animation type to specify Dra gObject, since the position of
the text is the only thing that can be modified.

MModifyObject() makes use of the animate keys which are defined by the last call to
MSetAnimateKeys(). If the escape key is pressed anytime during the animate process,
then the animation is aborted, and no modifications are made. New animation points are
selected using either the first button on the input device, or by positioning the cursor at the
desired point and hitting the select key. The finish key does the same thing in this case.

Upon successful modification of an object, an ObjectChangedEvent is sent to the
application which requested the modification.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid template id was used.

BadOwner

An animation is already under way.
BadValueError

An invalid object type was specified.

ObjectNotVisible
The object to be modified is not visible on the screen. All modified objects must be
visible.

SEE ALSO

234

MAbortAnimation(3C), MCreateObject(3C), MEvents(3C), MObjAtts(3C),
MSetAnimateKeys(3C)

235

MMoveObject

FUNCTION
Move an object in a window.

SYNTAX
C Interface

void MMoveObject(channel, object, move info);
Channel channel;
ObjectId object;

MapSetMoveAttributes *move info;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel().

object Object Id of the object to be moved.

move info A description of where to move the object.

DESCRIPTION
The MMoveObject() function moves an object on the Map. The move info structure
describes how to move the object. The new position of the object can be determined in
several ways. The first element (move type) of the move info structure determines how
the object will be moved. Shown below is a list of possible values and their meaning.

MoveAbsolute
the object is moved to the point specified in location.

MoveRelative
the point specified in location is added to the current location of the object.

MoveBearing
The new location for the object is calculated using the bearing and distance
elements of the structure.

STRUCTURES
C Interface

typedef struct {
int move_type;
MapPoint position;

} SetMovePosition;

236

typedef struct {
int move_type;
FLOAT distance;
FLOAT bearing;

} SetMoveBearing;

typedef union {
int move_type;
SetMovePosition absolute;
SetMovePosition relative;
SetMoveBearing bearing;

} MapSetMoveAttributes;

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid move type was specified.

SEE ALSO
MCreateObject(3C), MDestroyObject(3C), MDestroyList(3C),
MModifyObject(3C)

237

MNextEvent

FUNCTION
Get the next event from the event queue.

SYNTAX
C Interface

void MNextEvent(report)
MapEvent *report;

ARGUMENTS
report The next event in the queue.

DESCRIPTION
The MNextEvent function copies the first event from the event queue into the specified
MapEvent structure and then removes it from the queue. If the event queue is empty,
MNextEvent blocks until an event is received. MNextEvent is set up to receive events
from more than one MapServer if the application happens to be connected to more than
one.

SEE ALSO
MOpenChannel(3C), MPending(3C), MPutBackEvent(3C)

238

MNoOp

FUNCTION
No action is perfomed by Cartographer.

SYNTAX
C Interface

void MNoOp(channel)
Channel channel;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

DESCRIPTION
The MNoOp function causes no actions in Cartographer and is provided mainly to
exercise the communication channel.

ERRORS
BadChannel

An invalid channel id was used.

SEE ALSO
MOpenChannel(3C), MCloseChannel(3C)

239

MOpenChannel

FUNCTION
Open a channel for communication to Cartographer.

SYNTAX
C Interface

Channel MOpenChannel(node)
char *node;

ARGUMENTS
node The name of the machine to connect to.

DESCRIPTION
The MOpenChannel function opens a channel for communication between the
Cartographer Client and Cartographer. A Channel ID is returned and is used to reference
the connection with Cartographer. Every call made to the library requires a channel
identifier as a parameter. If the library is unable to connect to Cartographer, then
InvalidChannel is returned.

If the node parameter is NULL, MOpenChannel will attempt to connect to Cartographer
on the same machine as the Client.

RETURN VALUE
Upon successful connection, the channel ID of the connection is returned; otherwise
InvalidChannel is returned.

ERRORS
OutofMemory

Unable to allocate space for this channel. No memory left.

AlreadyConnected
The Cartographer Client already has an open connection to this Cartographer
Manager. No more than one connection per Cartographer Manager is allowed for
each Cartographer Client.

SEE ALSO
MCloseChannel(3C)

240

MPending

FUNCTION
Return the number of pending Map events.

SYNTAX
C Interface

int MPending()

DESCRIPTION
The MPending function returns the number of input events

that have been received from Cartographer, but not yet
removed from the event queue.

RETURN
The function returns the number of events still on the event queue. A value of 0 is
returned if no events are presently on the queue.

SEE ALSO
MPutBackEvent(3C)

241

MPixelsToPosition

FUNCTION
Convert a window point to geodetic coordinates (lat/long).

SYNTAX
C Interface

Boolean MPixelsToPosition (channel, window, i1, p1) Channel channel;
WindowId window;
IntMapPoint *i1;

MapPoint *p1; /* RETURN */

channel The connection to Cartographer; returned from
MOpenChannel.

window The window to be queried.
i1 The point to be converted, in window coordinates.
p1 The geodetic coordinates value of the point.

DESCRIPTION
The MPixelsToPosition function converts a pixel point on the geographic display to its
geodetic coordinates. If the specified pixel position does not correspond to a point on the
viewable geographic display surface, then False is returned; otherwise True is returned.
The current projection and scale are taken into account when converting the pixel location
to a geodetic coordinate. The pixel locations are mapped to the current geographic
display window space, where (0,0) represents the upper left hand corner of the window,
and (width, height) represents the lower right hand corner. Negative pixel values
represent points above and to the left of the upper left hand corner, and may be valid
provided that the viewable geographic display space extends beyond the corners of the
window. Likewise, values greater than width or height may occur if the viewable map
space extends below or to the right of the window.

RETURN
The value True is returned when a valid conversion takes place, and the pixel location lies
on top of the viewable geographic display space. The value False is returned when the
pixel location lies outside the viewable geographic display space, or is otherwise not
convertible.

ERRORS
BadChannel

An invalid channel id was used.

242

BadWindowId
The window id used was invalid.

BadValueError
The value (in window coordinates) was invalid.

SEE ALSO
MPositionToPixels(3C),

243

MPositionToPixels

FUNCTION
Convert a geodedic coordinate (lat/long) point to pixel coordinates.

SYNTAX
C Interface

Boolean MPositionToPixels(channel, window, p1, i1) Channel channel;
WindowId window;
MapPoint *p1;
IntMapPoint *i1; /* RETURN */

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.
window The window Id of the window to query.
p1 The geodedic coordinate point to be converted.
i1 The location of the point in window coordinates.

DESCRIPTION
The MPositionToPixels function converts a geodedic coordinate point to window
coordinates. The point is not guaranteed to be in the window. If the point lies within the
bounds of the displayable geographic display surface,

True is returned; otherwise, False is returned. The conversion takes into account the current
projection and scale of the geographic display. The output pixel values are mapped to the given
window so that the pixel location (0,0) corresponds to the upper left corner of the window, and
the pixel location (width, height) corresponds to the lower right corner of the window. Negative
values for either coordinate may occur if the viewable geographic display space extends above or
to the left of the window. Likewise, values greater than width or height may occur if the viewable
geographic display space extends below or the the right of the window.

RETURN
The function returns a Boolean value indicating whether or

Cartographer InterfaceLast change: June 1995 1

MPositionToPixels(3C)tographer Reference ManualsitionToPixels(3C)

not the point lies within the viewable space. For example, if the function returns False,
then the point is not viewable on the current geographic display. A value of True indicates

244

that the point does lie on the viewable space.

STRUCTURES
C Interface

typedef struct _IntMapPoint {
int x;
int y;
int z;

} IntMapPoint, *IntMapPointPtr;

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id used was invalid.

BadValueError
The specified location was invalid.

SEE ALSO
MPixelsToPosition(3C),

245

MPutBackEvent

FUNCTION
Push an event back on the input queue.

SYNTAX
C Interface

void MPutBackEvent(event)
MapEvent *event;

ARGUMENT
event Specifies a pointer to the event to be requeued.

DESCRIPTION
MPutBackEvent pushes an event back onto the head of the input queue (so that it would
become the next one returned by the MNextEvent call). This can be useful if you read an
event and then decide that you would rather deal with it later. There is no limit to the
number of times in succession that you can call MPutBackEvent.

SEE ALSO
MNextEvent(3C), MPending(3C), MSendEvent(3C)

246

MQueryChannel

FUNCTION
Get information about a channel.

SYNTAX
C Interface

ChannelInfo *MQueryChannel(channel)
Channel channel;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

DESCRIPTION
The MQueryChannel provides a Cartographer Client with information on the specified
communications Channel.

RETURN
MQueryChannel() returns a pointer to a ChannelInfo structure which is allocated in the C
version. This structure should be freed by calling free when done using the structure.

STRUCTURES
C Interface

typedef struct _ChannelInfo {
int num_connections;
int num_windows;
char node[NODE_

247

NAME_LENGTH];
} ChannelInfo;

The contents of the ChannelInfo structure are as follows:

num_connections
The current number of connections to Cartographer.

num_windows
The total number of defined windows for this Cartographer Manager.

node The host name of the machine that Cartographer is running on.

ERRORS
BadChannel

The channel id is invalid

OutofMemory
Unable to allocate space for ChannelInfo structure.

SEE ALSO
MOpenChannel(3C),

248

MQueryFeatures

FUNCTION
Retrieve display list of features for given geographic display.

SYNTAX
C Interface

MapQueryFeatures *MQueryFeatures(channel, window, feature type, feature
subtype)

Channel channel;
WindowId window;

FeatureType feature type; FeatureSubType feature subtype;

channel : in MTypes.Channel; window : in MTypes.WindowId;
feature type : in MTypes.FeatureType;

feature subtype : in MTypes.FeatureSubType) return
MTypes.MapQueryFeatures;

ARGUMENTS
channel Specifies the connection to the Chart Manager;

returned from MOpenChannel.

window Specifies the window to be queried.

feature type
Specifies the type of feature product to be queried. The value AnyFeature
is supported, and results in querying for all features regardless of type.

feature subtype
Specifies the subtype of feature product to be queried. The value
AnyFeature is supported, and results in querying for all features regardless
of subtype.

DESCRIPTION
The MQueryFeatures routine is used by Chart Clients to get a current list of displayed
features for a given geographic display (map window). This display list may include
features which are not currently visible because certain feature rendering attributes
preclude them from being visible. Refer to the MFeatAtts(3Map) manual page.

RETURN
The MQueryFeatures function returns a description of the features which are currently
displayed in the indicated window. If an error occurs NULL is returned.
MapQueryFeatures is allocated within this routine. It is the responsibility

of the calling process to free the memory using MFree (C

249

only).
STRUCTURES

C Interface

typedef struct {
int num_features;

MapFeatureAttributes *features;
} MapQueryFeatures;

The fields for the MapQueryAttributes structure are
described below:

features
A pointer to a list of currently displayed features, and the attributes under which
they have been rendered. A full description of each field in this structure may be
found under MFeatAtts(3Map). There are no built-in limits as to the number of
features which may be returned by an MQueryFeatures() call. In fact, under
certain circumstances the number can be rather large (such as the display of
countries at World View).

num_features
The number of features specified in the features list.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id used was invalid.

OutOfMemory
Unable to allocate the memory to store the data.

SEE ALSO
MChangeMap(3Map), MEvents(3C), MFeatAtts(3Map), MListFeatures(3Map),
MQueryMap(3Map), MuReference(3Mu)

250

MQueryMap

FUNCTION
Get current geographic display attributes for a given map window.

SYNTAX
C Interface

MapQueryAttributes *MQueryMap(channel, window, mode) Channel channel;
WindowId window;
MapBoundaryMode mode;

ARGUMENTS

channel Specifies the connection to the Chart Manager;
returned from MOpenChannel.

window Specifies the window to be queried.

mode Specifies the boundary mode type to be returned.
Valid values are: UseScale, UseWidth, and Use Boundary. See
MBoundary for more details on the supported modes.

DESCRIPTION
The MQueryMap function is used to obtain the current state of the geographic display.
This includes: the geographic display's coverage, a list of displayed map products, appli-
cable color models in use, and the displayed map projection. The feature display list is
NOT included here. Chart Clients needing this information should use the
MQueryFeatures call.

RETURN
The MQueryMap function returns a pointer to a MapQueryAttri butes structure. If an
error occurs NULL is returned. The memory to hold the MapQueryAttributes is allocated
within this routine. It is the responsibility of the calling process to free the memory using
MFree (C only).

STRUCTURES
C Interface

typedef struct {
int num_products;
MapProductAttributes products[MAX_MAPS]; ProjectionType projection;

MapBoundaryAttributes boundary;

251

int num_colors;
MapColorAttributes color[MAX_COLOR_MODELS]; FLOAT
zoom_factor;

} MapQueryAttributes;

The fields for the MapQueryAttributes structure are
described below:

products
The specifications for the map products in the geographic display. This structure
is described in detail under MProdAtts(3Map). Even though they are they same
structure, the product specification returned by MQuer yMap tends to be more
specific than that which is provided by MChangeMap.

num_products
The number of products specified in the products list. This value will not exceed
the Chart Manager constant MAX MAPS.

projection
A projection being displayed. The MProjection(3Map) man page discusses display
projections in detail.

color
A list of color specifications for the map display. The MColor(3Map) man page
discusses color models in detail. This specification is used only if the CMSetColor
bit is set in value mask.

num_colors
The number of color specifications in the color list.

This value cannot exceed the Chart Manager constant MAX COLOR MODELS.

boundary
The boundaries of the map to be displayed. The MBoundary(3Map) man page
discusses map display boundaries in detail. This specification is used only if the
CMSetBoundary bit is set in value mask.

zoom_factor
This is the current zoom factor retrieved by the most recent call to
MQuickZoom(3C). If this routine has not been used, then this value will always
be 1.0. If this routine has been used, then this value will lie between 0.0 and 1.0.
In all cases where a quick zoom does occur, the map's boundary attributes are
updated in the boundary fields.

ERRORS

252

BadChannel
An invalid channel id was used.

BadWindowId
The window id used was invalid.

OutOfMemory
Unable to allocate the memory to store the data.

SEE ALSO
MBoundary(3Map), MChangeMap(3Map), MColor(3Map), MEvents(3C),
MFeatAtts(3Map), MListMaps(3Map), MProdAtts(3Map), MProjection(3Map),
MQueryFeatures(3Map), MQuickZoom(3C), MuReference(3Mu)

253

MQueryObject

FUNCTION
Get information about an object.

SYNTAX
C Interface

MapObjectAttributes *MQueryObject(channel, object) Channel channel;
ObjectId object;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object being queried.

DESCRIPTION
MQueryObject is used to query the attributes of the given

object.

RETURN
MQueryObject returns a pointer to a MapObjectAttributes structure. Users of the C
routine must free this space via a call to free when done. If the call fails, then NULL is
returned.

STRUCTURES
C Interface

typedef int ObjectType;
typedef int ObjectSubType;
typedef struct {

ObjectType type;
ObjectSubType subtype;
ObjectAttributes atts;
XRectangle bounding_box;
ObjectData object_data;
} MapObjectAttributes;

The MapObjectAttributes structure contains the following items:

type
The object type. Can be one of List, Class, Template. or Drawable.

subtype

254

The object subtype. Can be one of Arc, Bitmap, Box, Circle, Ellipse, Line,
Polygon, Polyline, Rectangle, Segment, Symbol, or Text.

atts
The ObjectAttributes structure for this object; see MObjAtts(3C) for more detail.

bounding_box
A rectangular bounding box which describes, in pixels, the maximum breadth of
the object on the viewing screen. The structure used to describe this is an
XRectangle structure, which is described in the MQueryObjectBBox(3C) manual
page.

object_data
Specific data used to create the object. The MObject Data manual page describes
the ObjectData structure in detail.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MObjAtts(3C), MObjectData(3C), MQueryObjectBBox(3C)

255

MQueryObjectBBox

FUNCTION
Get an object's coverage box.

SYNTAX
C Interface

XRectangle *MQueryObjectBBox(channel, window, objects nobjects)
Channel channel;
WindowId window;
ObjectId *objects;
int nobjects;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window Specifies the window on which the object to query
is currently displayed.

objects The objects being queried.

nobjects
The number of objects to query.

DESCRIPTION
MQueryObjectBBox is used to query the bounding box coverage of the given objects.
This call is more efficient than the more general purpose MQueryObject() call, when the
Cartographer Client is only interested in the area of coverage for a given object.

RETURN
MQueryObjectBBox returns a pointer to an XRectangle structure. Users of the C routine
must free this space via a call to free when done. If the call fails, then NULL is returned.

STRUCTURES
C Interface

typedef struct {
short x;
short y;
unsigned short width;

unsigned short height;

256

} XRectangle;

The XRectangle structure contains the following items:

x, y
The object's upper left corner point, in pixels. This point is relative to the upper
left corner of the display pixmap, not the window pixmap, which may or may not
exceed the bounds of the display window.

width, height
The object's extent. Both values are in pixels.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

NOTES
The returned bounding box has values in pixels, relative to the display pixmap. These are
somewhat different than the values returned by MPositionToPixels(3C), as the display
pixmap is usually larger than the window size. The scaling between the two pixmaps is
the same, however. Hence only the (x,y) upper left coordinate is affected by this.

SEE ALSO
MQueryObject(3C)

257

MQueryWindow

FUNCTION
Get information about a Map Window.

SYNTAX
C Interface

QueryWindowAttributes *MQueryWindow(channel, window) Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window The window to be queried.

DESCRIPTION
The MQueryWindow returns the attributes of the specified window. Refer to
MWindowAtts(3C) for more information on this structure.

RETURNS
The C function returns a NULL pointer in the event that an error occurs. Otherwise a
pointer to a WindowAttributes structure is returned. For the C interface, the returned
space is allocated using malloc. This space should be freed up using free.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadOwner
The window exists, but this process has never connected to it.

OutofMemory
Unable to allocate space for WindowAttributes structure.

SEE ALSO
MCreateMapWindow(3C), MDestroyWindow(3C),

258

MQuickZoom

FUNCTION
Quickly zoom current view.

SYNTAX
C Interface

void MQuickZoom(channel, window, zoom factor)
Channel channel;
WindowId window;
FLOAT zoom factor;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

window The window to which the quick zoom is applied.

zoom factor
A relative scale factor at which the map is to be rendered. Valid range is
from 0.1 to 1.0.

DESCRIPTION
MQuickZoom requests that the current view be quickly zoomed. Quick zooming re-
renders the current view using pixel replication. The zooming is always performed relative
to the scale of the last map drawn. This re-rendering is limited to be 10% of the current
map scale (0.1).

Upon successful completion of this call, interested Clients are sent an
UpdateCoverageNotify event.

ERRORS
AlreadyDrawingMap

A map draw is already in progress.

BadValueError
A zoom factor outside the range limits was speicified. This might also occur if the
new produced scaling factors fail.

SEE ALSO
BUGS

MQuickZoom is not all that fast on some machines.

259

MRecenterMap

FUNCTION
Recenter a map.

SYNTAX
C Interface

void MRecenterMap(channel, window, new center) Channel channel;
WindowId window;
MapPoint *new center;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window Specifies the window to be queried.

new center
The new point on which to center the map display.

DESCRIPTION
The MRecenterMap function recenters the current map display on the specified point. All
other items remain the same, except for the product list, which may be modified slightly.
The products which are used are the current product list, with the subtype set to AnyMap.
This allows for other map products in the same class to be seamlessly rendered based on
the current location in the world.

ERRORS
SEE ALSO

260

MReleaseFocus

FUNCTION
Release point select focus.

SYNTAX
C Interface

void MReleaseFocus (channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

window The window whose focus is being released.

DESCRIPTION
MReleaseFocus stops PointSelectEvents from being sent to this process. These events are
requested through the call MRequestFocus.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id passed is not valid.

BadOwner
The window is valid and exists, but the user has never connected to it.

SEE ALSO
MCreateMapWindow(3C), MOpenChannel(3C), MSendEvent(3C), MSetEventMask(3C),
MRequestFocus(3C)

261

MReleaseWindow

FUNCTION
Release Cartographer Client as a user of a window.

SYNTAX
C Interface

void MReleaseWindow(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel The connection to Cartographer; returned by MOpen

Channel.

window The window to be released.

DESCRIPTION
MReleaseWindow removes this channel as a user of the window. The application will no
longer be sent events about this window. If this application is the last user of a window,
the window will be destroyed.

The window's owner is defined to be the Client which created the window. If the
window's owner releases its connection using MReleaseWindow, then the window no
longer has an owner. Other users of the window will be able to continue to use the
window until the last user releases its connection, at which point the window is destroyed.
If the window's owner instead releases its connection using MDestroyWindow, then the
window is unconditionally destroyed, and all other window connections are terminated.

ERRORS
BadChannel

The channel id was invalid.

BadWindowId
The specified window id is invalid.

BadOwner
The specified window id is valid, but this Client does not have an established
connection to it.

SEE ALSO
MDestroyWindow(3C), MUseNamedWindow(3C), MUseWindow(3C)

262

MReloadSearchPath

FUNCTION
Cause Chart to reload its lists of volumes to search for maps.

SYNTAX
C Interface

void MReloadSearchPath(channel)
Channel channel;

ARGUMENTS
channel Specifies the connection to Chart; returned from

MOpenChannel.

DESCRIPTION
The MReloadSearchPath causes Chart to reload its search path. It will look at the
environment variable MapSear chPath for its list of directories. If this variable is not
present, Chart will load the defaults that were specified at compile time. The map search
path can be further modified through the calls MAddVolume and MRemoveVolume.

ENVIRONMENT
MapNoRecursion

When this environment variable is set, only the specified path(s) is/are checked for
map files. Otherwise the specified path(s) and all of its/their subdirectories are
checked.

MapSearchPath
This environment variable is looked at to obtain a path list for loading maps.

ERRORS
BadChannel

An invalid channel id was used.

BUGS
If a Chart Client calls this routine, existing map color resources are freed up. This can
occur even though one or more map windows are present and visible. The colors will be
reallocated upon the next map draw command. In the meantime, some map colors could
unexpectedly change. This effect will only be seen on PseudoColor and GrayScale
machines.

SEE ALSO
MAddVolume(3Map), MRemoveVolume(3Map),

263

MRemoveFeature

FUNCTION
Remove specified feature from a map.

SYNTAX
C Interface

void MRemoveFeature(channel, window, feature)
Channel channel;
WindowId window;
FeatureProduct *feature;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window where intensity is to be set.

feature A map feature to be removed from the map. The
FeatureProduct structure is described below.

DESCRIPTION
MRemoveFeature removes the specified feature from the currently drawn map. The
MListFeatures(3Map) call provides a list of supported features in the Chart Manager.
This command and others which convert FeatureType types to strings and vice-versa are
documented under MuReference(3Mu).

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid or non-existent feature value was specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), MFeatAtts(3Map),
MModifyFeature(3Map), MModifyFeatures(3Map), MRemoveFeatures(3Map),
MuReference(3Mu)

264

MRemoveFeatures

FUNCTION
Remove specified features from a map.

SYNTAX
C Interface

void MRemoveFeatures(channel, window, features, nfeatures)
Channel channel;
WindowId window;
FeatureProduct *features;
int nfeatures;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.
window The window where intensity is to be set.
features A list of map features to be removed from the map. nfeatures The size of the
feature list specified in feature.

DESCRIPTION
MRemoveFeatures removes the specified features from the currently drawn map. The
MListFeatures(3Map) call provides a list of supported features in the Chart Manager.
This command and others which convert FeatureProduct types to strings and vice-versa
are documented under MuReference(3Mu).

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid or non-existent feature value was specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), MFeatAtts(3Map),
MModifyFeature(3Map), MModifyFeatures(3Map), MRemoveFeature(3Map),
MuReference(3Mu)

265

MRemoveInput

FUNCTION
Remove an input source from the Chart Manager.

SYNTAX
#include <M/Service.h>

void MRemoveInput(fd, mask)
int fd;
int mask;

ARGUMENTS
fd Specifies the source file descriptor on a Unix

based system..

mask Specifies the condition mask that tells when the
routine should be called. Valid entries for this field are ServiceReadMask,
ServiceWriteMask, Ser viceExceptMask, or ServiceAllMask.

DESCRIPTION
The MRemoveInput() routine removes a monitor for a data source. The callback for the
condition is cleared, even if an input handler has not been previously added.

The condition is specified by a bit field mask. This mask is created by or-ing any of the
following: ServiceReadMask, ServiceWriteMask, or ServiceExceptMask. Also, Servi
ceAllMask can be specified. This is defined to be all three operations.

SEE ALSO
MAddInput(3Map)

266

MRemoveObject

FUNCTION
Remove an object from a list.

SYNTAX
C Interface

void MRemoveObject(channel, list, object)
Channel channel;
ObjectId list;
ObjectId object;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

list Specifies the list through which to search for the
given object.

object Specifies the object to be removed from the list.

DESCRIPTION
MRemoveObject removes the specified object from it's list. The ObjectAttributes of both
the object and the List remain unaffected. Also the object that is removed from the list is
not destroyed.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MAddObject(3C), MDestroyObject(3C), MCreateList(3C),
MListObjects(3C)

267

MRemoveProduct

FUNCTION
Remove one specified map product from a geographic display.

SYNTAX
C Interface

void MRemoveProduct(channel, window, product)
Channel channel;
WindowId window;
ProductId product;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the product is currently
displayed.

product A map product to be removed from the geographic
display.

DESCRIPTION
MRemoveProduct removes the specified product from the currently drawn geographic
display. Products which are drawn on the current display are referenced using Produc
tIds. These values are returned as part of the product's MapProductAttributes structure.

ERRORS
AlreadyDrawingMap

A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid or non-existent map product id was specified.

SEE ALSO
MAddProduct(3Map), MAddProducts(3Map), MChangeMap(3Map), MProdAtts(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

268

MRemoveProducts

FUNCTION
Remove specified list of map products from a geographc display.

SYNTAX
C Interface

void MRemoveProducts(channel, window, products, npro ducts)
Channel channel;
WindowId window;
ProductId *products;
int nproducts;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the products are currently
displayed.

products A list of map products to be removed from the map display.

nproducts The number of products in the list.

DESCRIPTION
MRemoveProducts removes the specified products from the currently drawn geographic
display. Products which are drawn on the current display are referenced using Produc
tIds. These values are returned as part of the product's MapProductAttributes structure.

ERRORS
AlreadyDrawingMap

A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid or non-existent map product id was specified.

SEE ALSO
MAddProduct(3Map), MAddProducts(3Map), MChangeMap(3Map),

269

MRemoveProduct(3Map), MuReference(3Mu)

270

MRemoveTimeOut

FUNCTION
Remove an interval timer.

SYNTAX
void MRemoveTimeOut(timer id)
MapTimerId timer id;

ARGUMENTS
timer id Specifies the Id for the timout request to be
removed.

DESCRIPTION
The MRemoveTimeOut() routine removes a previously added time out. If the id is not a
valid time out, no action is taken. Note that timeouts are automatically removed once they
trigger. The MAddTimeOut() call returns a MapTimerId which can be used as an input to
this function.

SEE ALSO
MAddTimeOut(3Map)

271

MRemoveVolume

FUNCTION
Remove a volume from the Map Search Path.

SYNTAX
C Interface

void MRemoveVolume(channel, volume)
Channel channel;
char *volume;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpendChannel.

volume The volume to be removed from the map search path.

DESCRIPTION
The MRemoveVolume removes a volume from the Map Search Path. All the maps that
were present on this volume will no longer be available to the Client.

NOTE: Map products currently displayed on a map window whose source is the removed
volume will have their rendering colors deallocated. On PseudoColor and GrayScale
machines, this may unexpectedly change some map colors until the next map gets drawn.

ERRORS
BadChannel

An invalid channel id was used.

BadValueError
The specified volume is not part of the current map search path.

SEE ALSO
MReloadSearchPath(3Map), MAddVolume(3Map)

272

MReorderMaps

FUNCTION
Reorder specified map products on a geographic display.

SYNTAX
C Interface

void MReorderMaps(channel, window, products, nproducts)
Channel channel;
WindowId window;
ProductId *products;
int nproducts;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window on which the product is to be
displayed.

products The reordered list of map products to be
displayed.

nproducts The number of products in the list. This should match the number of products
currently displayed.

DESCRIPTION
MReorderMaps redisplays the map products in the specified order. The map product
listed first on the list will be displayed first, followed by the product listed second, and so
forth. Hence the product listed last is effectively at the top of the display. Features and
then objects are redisplayed once the reordering occurs.

ERRORS
AlreadyDrawingMap

A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError

273

An invalid or non-existent map product id was specified, or the total number of ids
is not equal to the current number of displayed map products.

SEE ALSO
MAddProducts(3Map), MChangeMap(3Map), MProdAtts(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

274

MRequestFocus

FUNCTION
Request map focus.

SYNTAX
C Interface

void MRequestFocus (channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window The window whose focus is being requested.

DESCRIPTION
MRequestFocus requests that PointSelectEvents be sent to this process first. These
events will only be sent if the process has its PointSelectMask set in its event mask. If no
process requests focus, then the default is to have PointSelectEvents sent to the process
which originally created the window.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id passed is not valid.

BadOwner
A user requested focus on a window to which no connection has been made, or
else a user request focus on a window where no PointSelect events have been
requested.

SEE ALSO
MCreateMapWindow(3C), MOpenChannel(3C), MSendEvent(3C), MSetEventMask(3C),
MReleaseFocus(3C)

275

MRestoreCursor

FUNCTION
Change cursor to the normal cursor.

SYNTAX
C Interface

void MRestoreCursor(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

window Specifies the window whose cursor state is to be
set.

DESCRIPTION
The MRestoreCursor function restores the cursor to its normal state. The normal state is
an object select state, with a cross hair cursor being displayed.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

SEE ALSO
MSetCursorMode(3C)

276

MScaleMap

FUNCTION
Rescale a map.

SYNTAX
C Interface

void MScaleMap(channel, window, scale factor)
Channel channel;
WindowId window;
FLOAT scale factor;

ARGUMENTS
channel Specifies the connection to the Chart Manager;

returned from MOpenChannel.

window Specifies the window to be queried.

scale factor
A scale factor at which the map is to be redrawn. Value is relative to the
currently displayed map. For example, a scale factor of 2.0 will result in
coverage approximately twice as large as the current coverage, and a scale
factor of 0.5 will result in coverage approximately half the current
coverage.

DESCRIPTION
The MScaleMap function scales the currently displayed map

using scale factor as a relative scaling value to the current map. The current map center,
coloring and projection are all maintained. The product list used is the current list of
products with the subtype field set to AnyMap. This enables map products in the same
class to be automatically switched based on the current scale in effect.

ERRORS
This routine can generate just about the same set of errors as the MChangeMap command.
Refer to that command for more information.

SEE ALSO
MChangeMap(3Map), MuReference(3Mu)

277

MSendEvent

FUNCTION
Send a map event to other users of a window.

SYNTAX
C Interface

void MSendEvent(channel, window, event, extra data) Channel channel;
WindowId window;
MapEvent *event;
Boolean extra data;

ARGUMENTS

channel Specifies the connection to Cartographer; returned
from MOpenChannel.

window The window where the event occurs.

event The event structure to send.

event size
The size fo the event structure.

extra data
Indiciates whether or not extra data is to be sent with the event. Set this
value to True only if extra data is to be sent along with the event (see Note
2 below). Set this value to False otherwise.

DESCRIPTION
The MSendEvent function sends the specified event to other users of a map window.
Only Client programs with MapUserEventMask set will receive these events. This can be
used as a means for communicating information between processes connected to a
common map window. The MapEvent structure is defined in MEvents.

Note 1: The MapEvents structure is not checked for validity, since there could be user
defined events not defined in the MapEvents structure. The first five fields however,
MUST, repeat MUST, match the MapGenericEvent structure, as all events are assumed to
include these fields. The event type field should be set to a value greater than or equal to
UserEvent.
Note 2: The sent event's size can be no larger than the size

278

of the MapEvent structure. This structure is a union of a number of other specific
Cartographer Manager events. If your program wishes to pass a user event which is
larger than this value, then it can be sent as extra data as follows:

a) Allocate space for the information to be sent. Set the extra data field in the
GenericEvent structure to the address of this space. Set the extra bytes field in the
GenericEvent structure to the size (in bytes) of the extra data to be sent.

b) Set the extra data parameter passed to the MSen dEvent call to True.

Note 3: There is no provision currently for Clients using this mechanism. Indeed, the
burden is on the Clients to ensure that user event types do NOT conflict with each other.
Errors may result if the Client tries to send an event whose type is already defined by
Cartographer (eg. value less than UserEvent).

ERRORS
BadChannel

The channel id is invalid.

BadWindowId
The window id is invalid.

BadValueError
The specified event type is invalid.

SEE ALSO
MEvents (3C)

279

MSetAnimateKeys

FUNCTION
Set the control keys used during animation.

SYNTAX
C Interface

#include <X11/keysym.h>
void MSetAnimateKeys(channel, window, select key, finish key, escape key)

Channel channel;
WindowId window;
int select key;
int finish key;
int escape key;

ARGUMENTS

channel Specifies the connection to Cartographer; returned
from MOpenChannel.

window The id of the window whose attributes are to be
set.

select key
The key to use for performing SELECT functions during animation.

finish key
The key to use for performing END functions during animation.

escape key
The key to use for performing ESCAPE functions during animation.

DESCRIPTION
MSetAnimateKeys() sets the current keys used during animation. It can be called at any
time. Keys are set on a per window basis. The 3 keys which are specified are, in fact, X
window Keysym's. Refer to the X window guides for more information on Keysym usage.

Each key takes on a default value if this routine is never called. The default key for select
key is XK Return, which

generally maps to the "Return" key. The default key for finish key is XK KP Enter, which
generally maps to the "Enter" key. The default key for escape key is XK Escape, which
generally maps to the "Esc" key.

280

In order for the animation key sequence to work correctly, the three keys must each be
unique. A BadValueError will occur if this is not the case.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window was used.

BadValueError
An invalid key was specified.

SEE ALSO
MCreateObject(3C), MCreateText(3C), MModifyObject(3C)

281

MSetAttributes

FUNCTION
Set the attributes of an object.

SYNTAX
C Interface

void MSetAttributes(channel, object, atts, value mask)
Channel channel;
ObjectId object;
ObjectAttributes *atts;
MapValueMask value mask;

ARGUMENTS

channel Specifies the connection to Cartographer; returned
from MOpenChannel.

object Specifies the object for which the attributes will
be set.

atts Specifies the attributes of the object that will
be set.

value mask
Specifies the value mask associated with the attributes that will be set.

DESCRIPTION
MSetAttributes sets the attributes of an object to those specified. Only the attributes with
a corresponding bit in value mask are set. Only the attributes for the object itself are
modified. If object is a List, then the attributes for the List itself are modified, but none of
its children are affected. If object is a Class, then the attributes for the Class are modified,
but the Class members remain unchanged until a call to MUpdateClass is made. If object
is a Drawable, then the effect on the object is immediate. If object is a Template, then the
template is redefined for future draw commands.

ERRORS
BadChannel

An invalid channel id was used.
BadObjectId

An invalid object id was used.

282

BadValueError
One or more fields in atts contain invalid values.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), MObjMask(3C), MSetColor(3C), MSetData(3C),
MSetFillType(3C), MSetFont(3C), MSetLineStyle(3C), MSetLineType(3C),
MSetPickability(3C), MSetVisibility(3C), MUpdateClass(3C)

283

MSetColor

FUNCTION
Change the color of an object.

SYNTAX
C Interface

void MSetColor(channel, object, color)
Channel channel;
ObjectId object;
char *color;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The id of the object whose color is to be changed.

color The new color for the object.

DESCRIPTION
MSetColor sets the color of a single object to a named color from the RGB database.
Behaviorally, this call works in a similar manner to MSetAttributes(). The color must
exist in the X Windows RGB Database. If it does not, the color is not changed, and an
error message is generated.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid color name was specified.

SEE ALSO
MApplyColor(3C), MObjAtts(3C), MSetAttributes(3C),

284

MSetCursorAnnotation

FUNCTION
Set the annotation for the cursor, when in normal cursor mode.

SYNTAX
C Interface

void MSetCursorAnnotation(channel, window,
range cursor, bearing cursor, calculation type,

value mask)
Channel channel;
WindowId window;
CursorState range cursor;

CursorState bearing cursor;
MapLineType calculation type;
MapValueMask value mask;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel().

window Specifies the window whose mode is to be set.

range cursor
Determines whether a circle will be displayed showing the range from the
hook_point. Possible values are: CursorOn, CursorOff and CursorToggle.

bearing cursor
Determines whether a line will be displayed showing the bearing from the
hook_point. Possible values are: CursorOn, CursorOff and CursorToggle.

calculation type
The method used to calculate disance, either GreatCircle or Rhumbline.

value mask
Indicates which values are to be set.

DESCRIPTION
The MSetCursorAnnotation() routine controls what is drawn on the cursor when the
cursor is in NormalCursorMode. If either

range cursor or bearing cursor is set to CursorOn, a window appears at the bottom of the

285

map display, to the left of the cursor position readout. This window displays the current
hook point, from which the range and bearing are calculated, as well as the current range
and bearing from the hook point.

If bearing cursor is set to CursorOn, then a line is drawn on the screen from the hook
point, to the current cursor location. If range cursor is CursorOn, then a circle is drawn
centered around the hook point with the radius equal to the range from the hook_point to
the current cursor location.

The value mask parameter determines which values for cursor annotation are to be set.
Only the values with a corresponding bit in the value mask will be set. The constants
CARangeCursor, CABearingCursor, and CACalculationType can be used to set the value
mask.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid value was specified for cursor mode.

SEE ALSO
MQueryWindow(3C)

286

MSetCursorMode

FUNCTION
Set the mode of the cursor.

SYNTAX
C Interface

void MSetCursorMode(channel, window, cursor mode) Channel channel;
WindowId window;
MapCursor cursor mode;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel().

window Specifies the window whose mode is to be set.

cursor mode
The mode of the cursor.

DESCRIPTION
The MSetCursorMode() command sets the current mode of the cursor to the specified
mode. The shape of the cursor will change, as well as the function of the left mouse
button. The cursor will stay in the specified mode until the action is complete in
Cartographer, or until another call to MSetCursorMode() is made with the cursor mode as
MapNormal Cursor. Some modes can only be exited by another call. All the modes are
described below.

MapNormalCursor
This is the normal mode for the cursor, the cursor shape is a cross hair. Clicking
on an object generates a ObjectSelectEvent to be sent Clicking on the map gen-
erates a PointSelectEvent.

MapWaitCursor
The cursor shape is a clock, and no selections are allowed on the map while in this
mode. This mode can only be exited by a mode change typically from a call to
MSetCursorMode() or MRestoreCursor().

MapHandCursor
This sets the cursor to Hand Pan mode. In this mode the cursor is shaped like a
hand. The first click on the map attachs the map to the cursor. The map can then
be moved about with the cursor. The second click

287

releases the map, and puts the cursor back into normal cursor mode.

MapRecenterCursor
This sets the cursor to Recenter mode. The shape of the cursor is a large dot.
Clicking on a spot causes the map to recenter about this point. After one click, the
mode returns to normal cursor.

MapZoomBoxCursor
This sets the cursor to Zoom Box mode. The shape of the cursor is four arrows
pointing out. The first click selects a center point for a rubber band box. When
released a rubber band box the same dimensions as the window is drawn on the
map. The box will expand to the location of the cursor, retaining the aspect ratio
of the window, until the mouse is clicked a second time. The map will then zoom
in to the area selected, and the mode will return to normal cursor mode.

MapGroupBoxCursor
This sets the cursor to Group Box mode. The shape and actions of the cursor are
the same as MapZoomBoxCursor, except that after the second click, a BoxEvent
is sent back to the application program, as well as an ObjectSelectEvent for every
object that lies within the box. The mode returns to normal cursor mode after the
second click.

MapAreaSelectCursor
This sets the cursor to Area Select mode. The shape and actions of the cursor are
the same as MapGroupBoxCursor, except that after the second click, a BoxEvent
is sent back to the application, but no ObjectSelectEvents. This mode returns to
normal cursor mode after the second click.

The animation keys can affect the cursor mode. The
escape key will almost always place the cursor mode back to MapNormalCursor. The
select key and finish key can be used in lieu of the input buttons on the input device for
specifying points in various modes. You can modifiy these keys with the
MSetAnimateKeys() call.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError

An invalid value was specified for cursor mode.
SEE ALSO

MRestoreCursor(3Map), MSetAnimateKeys(3C)

288

MSetData

FUNCTION
Set the client data field of an object.

SYNTAX
C Interface

void MSetData(channel, object, client data)
Channel channel;
ObjectId object;
char *client data;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose client data attribute
is to be set.

client data
The value to store in the client data field.

DESCRIPTION
MSetData sets the data field of an object to the specified value. Behaviorally, this call
functions in a similar manner to MSetAttributes(). The client data field can be any 32 bit
data item. This item is returned to the user when it is requested through MQueryObject,
or by an ObjectSelectEvent.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MApplyData(3C), MObjAtts(3C), MSetAttributes(3C)

289

MSetEventHandler

FUNCTION
Set/modify map event handler.

SYNTAX
C Interface

void MSetEventHandler(handler)
MCallbackProc handler;

handler The name of the procedure to call whenever an
event occurs.

DESCRIPTION
The MSetEventHandler specifies a procedure to be called when events from the Chart
Manager are received by this Client. This procedure should be used in conjunction with
MMainLoop(3Map). The callback procedure is expected to return void.

STRUCTURES
C Interface

typedef void *MCallbackProc();

SEE ALSO
MMainLoop(3Map), MAddInput(3Map), MAddTimeOut(3Map),

290

MSetEventMask

FUNCTION
Set/modify event mask.

SYNTAX
C Interface

void MSetEventMask(channel, window, event mask) Channel channel;
WindowId window;
MapValueMask event mask;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window Specifies the window for which the event mask will
be set/modified.

event mask
Specifies the new event mask. A mask of MapAl lEventsMask indicates
that all events will be received. A mask of MapNoEventsMask indicates
that no events will be received.

DESCRIPTION
The MSetEventMask function specifies a new event mask. Events can be individually
masked out based on a combination of the channel connection, the window, and the
process connected to the channel.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadOwner
The window exists, but the current process has never connected to it.

SEE ALSO
MCreateMapWindow(3C), MEvents(3C), MEventMask(3C), MNextEvent(3C),
MSendEvent(3C), MUseWindow(3C)

291

MSetFillOffset

FUNCTION
Set the pixel offset of an object and its children.

SYNTAX
C Interface

void MSetFillOffset(channel, object, fill offset) Channel channel;
ObjectId object;
int fill offset;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose fill offset is to be
set.

fill offset
The new pixel fill offset for the object.

DESCRIPTION
MSetFillOffset sets the fill offset of an object and all of its children. Behaviorally, this call
works in a manner similar to MSetAttributes(). This value provides a starting pixel offset
for objects using FillTransparent fill type. Refer to MObjAtts(3C) for more information on
this fields.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid fill offset value was specified.

SEE ALSO
MApplyFillOffset(3C), MObjAtts(3C), MSetAttributes(3C)

292

MSetFillType

FUNCTION
Set the fill type of an object.

SYNTAX
C Interface

void MSetFillType(channel, object, fill type)
Channel channel;
ObjectId object;
MapFillType fill type;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose fill type is to be set.

fill type The new fill type of the object.

DESCRIPTION
MSetFillType sets the fill type of an object. Behaviorally, this routines functions in a
similar manner to MSetAttri butes(). Valid values for fill type are: FillEmpty, FillO
paque, FillTransparent, FillDotted, FillHorizontalStripes, FillVerticalStripes,
FillNegativeSlants, FillPositiveSlants, and FillCrossHatch. If the fill type is FillOpaque, the
object is filled completely with the color of the object. If the fill type is FillEmpty, only the
border of the object is drawn. If the fill type is FillTransparent, then the object is filled
with a pattern that allows the user to see the map through the object. The pattern which is
drawn is a function of the fill weight and fill offset fields. Refer to MObjAtts(3C) for
more information on these fields.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid fill type was specified.

SEE ALSO
MApplyFillType(3C), MObjAtts(3C), MSetAttributes(3C)

293

294

MSetFillWeight

FUNCTION
Set the fill weight of an object and its children.

SYNTAX
C Interface

void MSetFillWeight(channel, object, fill weight) Channel channel;
ObjectId object;
int fill weight;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose fill weight is to be
set.

fill weight
The new fill weight of the object.

DESCRIPTION
MSetFillWeight sets the fill weight of an object and all of its children. Behaviorally, this
call works in a manner similar to MSetAttributes(). The fill weight attribute is applied
only when fill type is set to FillTransparent. Refer to MObjAtts(3C) for more information
on how this works.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid fill weight was specified.

SEE ALSO
MApplyFillWeight(3C), MObjAtts(3C), MSetAttributes(3C)

295

MSetFont

FUNCTION
Set the font of an object.

SYNTAX
C Interface

void MSetFont(channel, object, font)
Channel channel;
ObjectId object;
char *font;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose font is to be set.

font The name of the new font for the object.

DESCRIPTION
MSetFont sets the object's font to the named font. Behaviorally, this routine works in a
similar manner to MSetAttributes(). If the font name is not valid, the font remains
unchanged, and an error message is issued. If object is not of type Text or Character,
there is no real change as these are the only two object types that use the font parameter.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid font name was specified.

SEE ALSO
MApplyFont(3C), MObjAtts(3C), MSetAttributes(3C)

296

MSetHiLite

FUNCTION
Highlight/Unhighlight an object.

SYNTAX
C Interface

void MSetHiLite(channel, object, hilite)
Channel channel;
ObjectId object;
Boolean hilite;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The object to be highlighted.

hilite The highlight state. If set to True, then the
object will be drawn in the current highlight color of the window. If set to
False, the object will be unhilited, and will be displayed in its own color.

DESCRIPTION
MSetHiLite causes the object to be displayed in the current highlight color. Behaviorally,
this function works in a manner similar to MSetAttributes(). If object is a List, then this
command has no effect because a List is never actually drawn. The effects of this
command on a Class object will only be seen if MUpdateClass() is called. The color of
highlighted objects can be changed with the routine MSetHiLiteColor.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MApplyHiLite(3C), MObjAtts(3C), MSetAttributes(3C),
MUpdateClass(3C)

297

MSetHiLiteColor

FUNCTION
Set the color in which highlighted objects will be displayed.

SYNTAX
C Interface

void MSetHiLiteColor(channel, window, hilite color) Channel channel;
WindowId window;
char *hilite color;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window The window whose highlight color is to be set.

hilite color
The new highlight color, must be a valid X Windows color name.

DESCRIPTION
MSetHiLiteColor sets the highlight color of the specified window to the named color. All
objects that are currently highlighted will be changed to this color. The color name must
be a valid name from the X Windows RGB Color Database.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

BadValueError
An invalid color name was specified.

SEE ALSO
MApplyHiLite(3C), MSetHiLite(3C)

298

MSetIntensity

FUNCTION
Set the color intensity on a geographic display.

SYNTAX
C Interface

void MSetIntensity(channel, window, intensity) Channel channel;
WindowId window;
int intensity;

void MSetIntensityDetail(channel, window, intensity, map, feature)
Channel channel;
WindowId window;
int intensity;
MapProduct *map;
FeatureProduct *feature;

void MSetIntensityModels(channel, window, atts, natts) Channel channel;
WindowId window;

MapSetIntensityDetail *atts;
int natts;

void MResetIntensity(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

window The window where intensity is to be affected.

intensity The new intensity of maps and features, range of 0-255.

map The map product or products whose intensity is to
be set.

feature The feature product or products whose intensity is
to be set.

atts A list of detail intensity color models. See
MColor(3Map) manual page for a description of this structure.

299

natts The size of the list provided to MSetIntensityMo
dels().

DESCRIPTION
ChartClients can modify the intensity of displayed maps and features in a map window to
allow better viewing of objects and overlays, or to hi-lite certain maps or features versus
others. Only maps and features which support the intensity color model (eg. allocate
modifiable color resources when rendered) are affected by any of these calls, except when
the item is rendered, at which point all maps and features are affected.

The MSetIntensity sets the intensity of all map products and features on a geographic
display. The intensity is a value between 0 and 255. The intensity represents the
maximum value for RGB values in the map or feature product's color map. If the value is
outside of the valid range, it is forced to the end of the range. The call basically complies
with previous versions of MSetIntensity() in that all maps and features will have this
intensity. More detailed intensity settings are lost when this call is made.

The MResetIntensityModels call sets the intensity of all
maps and features to the value specified by the last MSetIn tensity call for this window, or
equivalent. More detailed intensity settings are lost when this call is made.

The MSetIntensityDetail call loads a detailed intensity model for a given map window.
Intensity models are sorted internally by Chart from most detailed to least detailed. When
determining the intensity to set a map or feature, the first matching intensity model is used.
For example, when

determining the intensity of a World Vector Shoreline map, a color model which specifies
the intensity of map products {VectorMap, WorldVectorShoreLine}, will be used before a
color model which specifies the intensity of map products {VectorMap, AnyMap}, which
in turn would take priority over the general intensity model for map products {AnyMap,
AnyMap}.

If the Chart Client is interested in affecting only maps,
then specify a FeatureProduct with feature type and sub type fields set to NoFeature.
Likewise, if the Chart Client is interested in affecting only features, then specify a Map
Product with map type and sub type fields set to NoMap.

Specifying a MapProduct with both fields set to AnyMap and a FeatureProduct with both
fields set to AnyFeature is equivalent to the MSetIntensity() call.

If the intensity model already exists in the list for this window, then the existing model's
intensity value is replaced by this model's intensity value, and all displayed maps and
features which match this model are updated.

The MSetIntensityModels call acts similarly to the MSetIn tensityDetail call, but this call
allows a Chart Client to specify multiple intensity color models in the same call.

300

ERRORS
BadChannel

An invalid channel id was used.
BadWindowId

An invalid window id was used.

BadValueError
An invalid range value was specified.

NOTES
Maps and features which are rendered with colors allocated in a degraded mode may see
odd side effects, such as their intensity being modified by detailed intensity requests for
other maps or features which should normally not effect them. This is because their colors
are being shared with other maps and features. They may also see no effect when the
intensity is changed because the colors are allocated read only. A Chart Client has no way
of knowing this information beforehand. Other display hardware prevents intensity from
working due to the way colors are allocated (such as TrueColor machines).

SEE ALSO
MChangeMap(3Map), MColor(3Map)

301

MSetLineStyle

FUNCTION
Set the line style for an object.

SYNTAX
C Interface

void MSetLineStyle(channel, object, line style) Channel channel;
ObjectId object;
MapLineStyle line style;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line style is to be changed.

line style
The new line style.

DESCRIPTION
MSetLineStyle sets the line style attribute to the given value. Behaviorally, this function
works in a manner similar to MSetAttributes(). Valid values for line style include:
MapLineDashed, MapLineSolid, MapLineDotDashed, MapLineDotted, and
MapLineDoubleDashed.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid line style was specified.

SEE ALSO
MApplyLineStyle(3C), MObjAtts(3C), MSetAttributes(3C)

302

MSetLineType

FUNCTION
Set the line type of an object.

SYNTAX
C Interface

void MSetLineType(channel, object, line type)
Channel channel;
ObjectId object;
MapLineType line type;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line type is to be changed.

line type The new line type.

DESCRIPTION
MSetLineType specifies the line type attribute for an object. Behaviorally, this
function works in a manner
similar to MSetAttributes(). Valid values include: GreatCircle, RhumbLine, or GeoDesic.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid line type was specified.

SEE ALSO
MApplyLineType(3C), MObjAtts(3C), MSetAttributes(3C)

303

MSetLineWidth

FUNCTION
Set the line width of an object.

SYNTAX
C Interface

void MSetLineWidth(channel, object, line width) Channel channel;
ObjectId object;
int line width;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line width is to be changed.

line width
The new line width.

DESCRIPTION
MSetLineWidth sets an object's line width attribute. Behaviorally, this function works in a
manner similar to MSetAttributes(). The line width value is in pixels, and should not be
less than 0.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid line width value was used.

SEE ALSO
MApplyLineWidth(3C), MObjAtts(3C), MSetAttributes(3C)

304

MSetMapBounds

FUNCTION
Set the geographic display boundary attributes.

SYNTAX
C Interface

void MSetMapBounds(channel, window, bounds)
Channel channel;
WindowId window;

MapBoundaryAttributes *bounds;

ARGUMENTS
channel Specifies the connection to the Chart Manager;

returned from MOpenChannel.

window Specifies the geographic display to be changed.

bounds The new map boundaries to display. See
MBoundary(3Map) for a full description.

DESCRIPTION
The MSetMapBounds command changes the geographic display coverage to the specified
bounds. The projection, features, and color model remain unchanged. This call is
identical to the MChangeMap call, with value mask set to CMSetBoundary. The map
product list used is the current list of map products with the subtype field set to AnyMap.
This enables map products in the same class to be automatically switched based on the
scale currently in effect.

ERRORS
This routine generates the same set of errors as the MChangeMap command. Refer to
that command for more information.

SEE ALSO
MChangeMap(3Map), MuReference(3Mu)

305

MSetMapColors

FUNCTION
Change the foreground and background colors in a geographic display.

SYNTAX
C Interface

void MSetMapColors(channel, window, background, fore ground)
Channel channel;
WindowId window;
char *background;
char *foreground;

ARGUMENTS

channel Specifies the connection to Cartographer.

window Specifies the window.

background
Specifies the name of the new background color.

foreground
Specifies the name of the new foreground color.

DESCRIPTION
The MSetMapColors function changes the foreground and background colors in a
geographic display to the newly specified colors. The color names are character strings,
and must be valid X Window RGB Database color names. The color names are used to
search the RGB database to determine the actual RGB values for the specified colors.

Only those map and feature products which support the foreground/background color
model will be affected by this call. This model is currently supported only by vector maps.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id passed is not valid.

BadValueError

An invalid foreground or background color name was specified.

306

SEE ALSO
MCreateMapWindow(3C), MSetMapColorsByRGB(3C), MWindowAtts(3C),

307

MSetMapColorsByRGB

FUNCTION
Change the foreground and background colors in a geographic display.

SYNTAX
C Interface

void MSetMapColorsByRGB(channel, window,
bgnd red, bgnd green,

bgnd blue,
fgnd red, fgnd green,

fgnd blue)
Channel channel;
WindowId window;
unsigned short bgnd red;

unsigned short bgnd green;
unsigned short bgnd blue;
unsigned short fgnd red;
unsigned short fgnd green;
unsigned short fgnd blue;

ARGUMENTS
channel Specifies the connection to Cartographer.

window Specifies the window.

bgnd red Specifies the red value for the background color.

bgnd green
Specifies the green value for the background color.

bgnd blue Specifies the blue value for the background color.

fgnd red Specifies the red value for the foreground color.

fgnd green
Specifies the green value for the foreground color.

fgnd blue Specifies the blue value for the foreground color.

DESCRIPTION
The MSetMapColorsByRGB function changes the colors of the background and

308

foreground in a geographic display to the newly specified colors. The colors are specified
by providing the red, green, and blue values for the pixel. The values are actually 16 bit
unsigned values as required by X Windows, with only the top eight bits actually used.

Only those map and feature products which support the foreground/background color
model will be affected by this call. This model is currently supported only by vector maps.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
The window id passed is not valid.

SEE ALSO
MSetMapColors(3C), MWindowAtts(3C),

309

MSetMapWidth

FUNCTION
Set the geographic display width.

SYNTAX
C Interface

void MSetMapWidth(channel, window, map width)
Channel channel;
WindowId window;
FLOAT map width;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window Specifies the window to be queried.

map width The geographic display width at which the geo-
graphic display is to be drawn. Value is in nautical miles.

DESCRIPTION
The MSetMapWidth call sets the geographic display width to the specified value, and
redraws it if necessary. This command scales the geographic display relative to the
current width. The geographic display's center, projection, features, and color models do
not change. The map product list used is the current list of map products with the sub
type field set to AnyMap. This enables map products in the same class to be automatically
switched based on the scale currently in effect.

ERRORS
SEE ALSO

310

MSetObjectData

FUNCTION
Set type-specific data for an object.

SYNTAX
C Interface

void MSetObjectData(channel, object, data, value mask)
Channel channel;
ObjectId object;
ObjectData *data;
MapValueMask value mask;

channel The connection to Cartographer; returned from
MOpenChannel().

object The id of the object whose data attribute is to be
set.

data The type specific data to be used for the object.

value mask
A bit mask indicating which fields are to be set.

DESCRIPTION
MSetObjectData is used for modifying parts of an already existing object. The format of
this routine is general purpose, intended to provide extensive editing capabilities for
objects. In general, once an object is created, its type (eg. Drawable, List, Class,
Template) and subtype (eg. Ellipse, Circle, etc.) cannot be changed. Hence, when using
this call, care must be made to ensure that the values being changed are appropriate for the
object. Normally, this information should first be obtained from MQueryObject(3C).

The MObjectData(3C) manual page describes the format of the data structure. Only those
fields which have their bits set in the value mask will be modified. The value mask fields
can take on the following values (note that not all values are valid for all objects):

Object Type, Value mask, Data element
Arc

OBDCenter : MapPoint center
OBDMajorAxis : double major_axis
OBDMinorAxis : double minor_axis
OBDBearing : double bearing
OBDAngle1 : double angle1
OBDAngle2 : double angle2

311

Bitmap
OBDLocation : MapPoint location

OBDSetBitmap : int width,height
: unsigned char *bmap

OBDAddBitmap : unsigned char *bmap
For OBDAddBitmap, the size of the bmap data array (width and height)
must be the same as the original bitmap data. OBDXHot : int

x_hot

OBDYHot : int y_hot

XBitmap
OBDLocation : MapPoint location
OBDSetBitmap : int width,height

: Pixmap xbitmap
OBDXHot : int x_hot
OBDYHot : int y_hot

XPixmap
OBDLocation : MapPoint location
OBDSetPixmap : int width,height
OBDXHot : int x_hot
OBDYHot : int y_hot

: Pixmap xpixmap
: Pixmap xbitmap

Box
OBDCenter : MapPoint center
OBDWidth : double width
OBDHeight : double height
OBDBearing : double bearing

Character
OBDLocation : MapPoint location
OBDXOffset : double x_offset
OBDYOffset : double y_offset
OBDChar : char c

Circle
OBDCenter : MapPoint center
OBDRadius : double radius

Ellipse
OBDCenter : MapPoint center

312

OBDMajorAxis : double major_axis
OBDMinorAxis : double minor_axis
OBDBearing : double bearing

Line

OBDPoint1 : MapPoint p1
OBDPoint2 : MapPoint p2

OBDPointOffset1 : short p1_x_offset,
p1_y_offset

OBDPointOffset2 : short p2_x_offset,

p2_y_offset
Polygon, Polyline

OBDPointList : MapPoint *points
int npoints

Rectangle
OBDTopLeft : MapPoint top_left
OBDBottomRight : MapPoint bottom_right

Sector
OBDCenter : MapPoint center
OBDRange1 : double range1
OBDRange2 : double range2
OBDBearing : double bearing
OBDAngle1 : double angle1
OBDAngle2 : double angle2

Slash, Segment
OBDLocation : MapPoint location
OBDBearing : double bearing
OBDAngle1 : double angle
OBDLength : int length

Symbol
OBDLocation : MapPoint location
OBDSymbol : NTDSSymbol symbol
OBDSize : int point_size

Text
OBDLocation : MapPoint location
OBDXOffset : double x_offset
OBDYOffset : double y_offset
OBDText : char *text

int ntext

313

Weather
OBDPointList : MapPoint *points

int npoints
OBDFront : FrontType front_type

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid data field was used.

BadMaskValue
An invalid value_mask was used.

SEE ALSO
MObjectData(3C), MQueryObject(3C)

314

MSetOffset

FUNCTION
Modify a text object's offset.

SYNTAX
C Interface

void MSetOffset(channel, object, xoffset, yoffset) Channel channel;
ObjectId object;
int xoffset;
int yoffset;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The object whose text field is to be moved.

xoffset The horizontal offset in pixels. Positive values
indicate points to the right of the object location, and negative values
indicate points to the left.

yoffset The vertical offset in pixels. Positive values
indicate points above the object location, and negative values indicate
points below.

DESCRIPTION
MSetOffset modifies a SinglePoint object's offset values, without the overhead of
destroying and creating the object. Using this command on non-single point objects will
cause a BadValueError. Currently the following Drawable objects are SinglePoint objects:
AngleText, Bitmap, Character, Charac ter16, Segment, Slash, Symbol, and Text.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
The object is not a SinglePoint object.

SEE ALSO

315

MChangeText(3C), MDrawText(3C), MSetObjectData(3C)

FUTURE EXPANSIONS
The MSetOffset command is provided for compatability with earlier systems, and provides
a simplified interface to the MSetObjectData() routine.

316

MSetPickability

FUNCTION
Set the pickability of an object.

SYNTAX
C Interface

void MSetPickability(channel, object, pickable) Channel channel;
ObjectId object;
Boolean pickable;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The id of the object whose pickability is to be
set.

pickable The new pickability of the object. Valid values are Pickable, ParentPickable, and
NotPickable

DESCRIPTION
MSetPickability sets the pickability of an object, and only that object. If object is a List or
a Class, then the pickability is modified only on the ObjectAttributes for the List or Class
object itself. You can affect the Class members by calling MUpdateClass.

The pickability determines whether or not an object is selectable on the window. In the
simplest case, an object that is not a member of a List, if the object is selected and it's
pickability is set to either Pickable or ParentPickable, then an ObjectSelectEvent is sent to
the Cartographer Client that owns the object. If the object is not pickable, no event is
sent.

If an object is a member of a List, and is Pickable, then an ObjectSelectEvent is sent to the
Cartographer Client, just as if it were not in a List. If the object is not pickable, then no
event is sent. If the object's pickability is set to ParentPickable then the pickability of the
object's parent is checked. If the parent is pickable, then an ObjectSelectEvent is sent with
the id of the List (not the id of the object actually selected). If the List is not pickable, no
event is sent, and if the List is ParentPick able, then this process continues until an object
is found that is not pickable, or the top of the object tree is

reached. If the top List in the object tree is ParentPick able, then an event is sent to the
Cartographer Client just as if this object were set to Pickable.

317

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid pickable parameter was specified.

SEE ALSO
MApplyPickability(3C), MEvents(3C), MObjAtts(3C), MUpdateClass(3C)

318

MSetPixel

FUNCTION
Change the color of an object.

SYNTAX
C Interface

void MSetPixel(channel, object, pixel)
Channel channel;
ObjectId object;
unsigned long pixel;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The id of the object whose color is to be changed.

pixel The pixel value of the color for the object.

DESCRIPTION
MSetPixel sets the color of a single object to the specified pixel value. Behaviorally, this
call works in a similar manner to MSetAttributes(). The pixel value must be a valid pixel
value for the display. The validity of the color depends on the X Display hardware. Also
Cartographer Clients must ensure that specified pixel colors are managed properly. The
MSetColor is therefore recommended for most cases.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid color value was specified.

SEE ALSO
MApplyColor(3C), MObjAtts(3C), MSetAttributes(3C),

319

MSetPriority

FUNCTION
Set the pixel offset of an object and its children.

SYNTAX
C Interface

void MSetPriority(channel, object, priority)
Channel channel;
ObjectId object;
short priority;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

object The id of the object whose fill offset is to be
set.

priority The new priority for the object.

DESCRIPTION
MSetPriority sets the priority of an object. The display will be updated to reflect the new
stacking order of the objects. Behaviorally, this call works in a manner similar to
MSetAttributes(). This value determines the order in which the objects are drawn on the
screen. Refer to MObjAtts(3C) for more information on this field.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid fill offset value was specified.

SEE ALSO
MApplyPriority(3C), MObjAtts(3C), MSetAttributes(3C)

320

MSetSegment

FUNCTION
Change the bearing of a Drawable object of type Segment.

SYNTAX
C Interface

void MSetSegment(channel, object, bearing, length) Channel channel;
ObjectId object;
FLOAT bearing;
int length;

ARGUMENTS

channel The connection to Cartographer; returned from
MOpenChannel.

object The location to place the segment.

bearing The bearing of the segment in degrees.
length The length of the segment, in nautical miles.

DESCRIPTION
MSetSegment sets the bearing of the Segment object to the specified value. If the object
is not a Segment drawable, no change is made, and an error message is issued.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
An invalid length was used.

SEE ALSO
MDrawSegment(3C)

321

MSetSymbolSize

FUNCTION
Modify the size of the drawn symbol in a symbol object.

SYNTAX
C Interface

void MSetSymbolSize(channel, object, size)
Channel channel;
ObjectId object;
int size;

ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

object The object whose symbol is to be changed.

size The new size of the symbol object. Supported
values are: Tiny, Small, Medium, Large, Huge, TinyBold, SmallBold,
MediumBold, LargeBold, and HugeBold.

DESCRIPTION
MSetSymbolSize changes the font size for NTDS symbol displayed in a symbol object,
without the overhead of destroying and creating the object. Using this command on non-
symbol objects will cause a BadValueError.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

BadValueError
The object is not a Symbol object.

SEE ALSO
MChangeSymbol(3C), MDrawSymbol(3C), MSetObjectData(3C)

FUTURE EXPANSIONS
The MSetSymbolSize command is a simplified interface to the MSetObjectData()
function.

322

MSetTemplate

FUNCTION
Selectively copy one object's attributes to another object.

SYNTAX
C Interface

void MSetTemplate(channel, object, template,
value mask)

Channel channel;
ObjectId object;
ObjectId template;
MapValueMask value mask;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose attributes are to be changed.

template The object whose attributes are to be copied.

value mask
The bit mask representing those ObjectAttributes which are to be copied.
See MObjMask(3C).

DESCRIPTION
MSetTemplate copies the attributes of a Template into an object. Only those attributes
whose bit is set in
value mask will be copied into the object. If object is a Drawable, then the
ObjectAttributes from template are copied to the Drawable, and the graphics are updated.
If object is a List, then the ObjectAttributes for template are copied to the List's
ObjectAttributes, but are not copied to any of its children. Likewise, if object is a Class,
then the ObjectAttributes for template are copied to the ObjectAttri butes for the Class,
but are not copied to any of the members of the Class. Use MUpdateClass to then update
the members of the Class.

ERRORS
BadChannel

An invalid channel id was used.
BadObjectId

An invalid object id was used.
SEE ALSO

323

MApplyTemplate(3C), MObjAtts(3C), MSetAttributes(3C),
MUpdateClass(3C)

324

MSetVisibility

FUNCTION
Set the visibility of an object.

SYNTAX
C Interface

void MSetVisibility(channel, object, visibility) Channel channel;
ObjectId object;
Boolean visibility;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The id of the object whose visibility is to be
set.

visibility
The new visibility of the object.

DESCRIPTION
MSetVisibility sets the visibility of an object. If an active object's visibility is set to Hidden
or False, then the object is not visible on the map. If an active object's visibility is set to
Visible or True, then the object is visibile on the map. During the time in which an
animated object is being created, but is not yet active, its visibility cannot be altered with
client calls (refer to MCreateOb ject()). If object is a List, then this routine has no effect
as lists are never actually drawn. If object is a Drawable, then the effect on the object's
visibility is immediate. If object is a Template, then the visibility state for the template is
redefined. If object is a Class, then the visibility of all members of the class will only be
affected upon calling MUpdateClass().

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
An invalid object id was used.

SEE ALSO
MApplyVisibility(3C), MObjAtts(3C), MSetAttributes(3C),
MUpdateClass(3C)

325

MSync

FUNCTION
Flush output buffer, and wait until commands have executed.

SYNTAX
C Interface

void MSync(channel)
Channel channel;

ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

DESCRIPTION
MSync flushes the output buffer, and then waits until all requests have been received and
processed by Cartographer.

ERRORS
BadChannel

An invalid channel id was used.

SEE ALSO
MOpenChannel(3C), MCloseChannel(3C)

326

MUnMapWindow

FUNCTION
Make a window invisible.

SYNTAX
C Interface

void MUnMapWindow(channel, window)
Channel channel;
WindowId window;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

window Specifies the window to be made invisible.

DESCRIPTION
The MUnMapWindow removes a window in Cartographer from the screen. The window
has not been destroyed, it is simply not visible.

ERRORS
BadChannel

An invalid channel id was used.

BadWindowId
An invalid window id was used.

SEE ALSO
MCreateMapWindow(3C), MMapWindow(3C), MDestroyWindow(3C)

327

MUpdateClass

FUNCTION
Updates the attributes of Class member objects.

SYNTAX
C Interface

void MUpdateClass(channel, class, value mask)
Channel channel;
ObjectId class;
MapValueMask value mask;

ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

class Specifies the object identifier of the Class to be
updated.

value mask
Bit mask inidicating which fields in the Class are to be updated.

DESCRIPTION
MUpdateClass copies a Class object's ObjectAttributes into each of its member objects.
Only the values whose bit is set in the bit mask will be updated. By using this command,
several fields in a Class can be updated using the MSet... calls. The new ObjectAttributes
can then be simulataneously applied to all of the class members using just one call.

This call also works with List objects in a similar manner to Class objects.

ERRORS
BadChannel

An invalid channel id was used.

BadObjectId
The specified object id is not a valid List or Class object.

SEE ALSO
MApplyAttributes(3C), MCreateClass(3C), MObjAtts(3C),
MSetAttributes(3C)

328

MUseNamedWindow

FUNCTION
Register channel as a user of a window.

SYNTAX
C Interface

WindowId MUseNamedWindow(channel, wname, event mask) Channel channel;
char *wname;
MapValueMask event mask;

ARGUMENTS
channel The connection to Cartographer; returned by MOpen

Channel.

wname A pointer to the name of the window to connect to.
This must match the window name field in the Win dowAttributes
structure for the MCreateMapWindow call. If more than one window has
the same name, then the first window encountered with a matching name
will be returned.

event mask
An initial mask of map events of interest to this process.

DESCRIPTION
MUseNamedWindow registers the specified channel as a user of the window. All events
specified within the event mask will be sent to the application.

A Cartographer Client registered as a user of a window cannot destroy the window. Only
the creator of the window is allowed to destroy the window. If the user makes a call to
MDestroyWindow(), the call will be treated as an MReleaseWindow() call.

RETURN
If no errors occur, MUseNamedWindow will return the WindowId of the connected
window. If the named window does not exist, or if it cannot be connected to, then the
value InvalidWindowId is returned.

ERRORS
BadChannel

The channel id was invalid.
BadWindowName

No window with the specified name exists.
SEE ALSO

329

MCreateMapWindow(3C), MDestroyWindow(3C), MEvents(3C), MEventMask(3C),
MReleaseWindow(3C), MUseWindow(3C)

330

MUseWindow

FUNCTION
Register channel as a user of a window.

SYNTAX
C Interface

WindowId MUseWindow(channel, window, event mask) Channel channel;
WindowId window;
MapValueMask event mask;

ARGUMENTS
channel The connection to Cartographer; returned by MOpen

Channel.

window The window to connect to. This value has been
previously returned by an MCreateMapWindow call made by another
Cartographer Client.

event mask
An initial mask of map events of interest to this process.

DESCRIPTION
MUseWindow registers the specified channel as a user of the window. All events
specified within the event mask will be sent to the application.

This call differs from MUseNamedWindow only in the way in which it connects to a
window (using the WindowId, instead of the window's name). Similar restrictions to
MUseNamedWindow concerning releasing a window's connection apply to this call as
well.

RETURN
The WindowId is returned as verification that the window exists and is accessible to the

caller. The value InvalidWindowId is returned in the event that the specified value for
window is invalid.

ERRORS
BadChannel

The channel id was invalid.

BadWindowId
The window id is invalid.

331

SEE ALSO
MDestroyWindow(3C), MEvents(3C), MEventMask(3C), MReleaseWindow(3C),
MUseNamedWindow(3C)

332

MuAltitude

FUNCTION
Chart Manager altitude utility routines.

SYNTAX
C Interface

FLOAT MuTargetAltitude(altitude, range, angle, radius) FLOAT altitude;
/*Input*/
FLOAT range; /*Input*/
FLOAT angle; /*Input*/
FLOAT radius; /*Input*/

FLOAT MuTargetMaxRange(altitude, target radius) FLOAT altitude; /*Input*/
FLOAT target; /*Input*/
FLOAT radius; /*Input*/

ARGUMENTS
altitude The altitude of the view position.
range The range from the view position to the target.
angle View angle from the view position.

radius Effective radius of the earth.
target Altitude of the target.

DESCRIPTION
These three routines are unit independent. The return values will be in the units of the
input variables. The radius of the earth can be:

EARTH RADIUS NM
EARTH RADIUS MI
EARTH RADIUS KM

RETURN VALUE

The MuTargetAltitude() function returns the altitude of the target in the respective units.
The MuTargetMaxRange() function returns the maximum range that a target at the
specified altitude can be seen.

333

MuConvert

FUNCTION
Chart Manager coordinate conversion routines.

SYNTAX
C Interface

int MuGeoMgr(geo, mgr)
GEO_COORD *geo; /*Input*/

MGR_COORD *mgr; /*Output*/

int MuMgrGeo(mgr, geo)
MGR_COORD *mgr; /*Input*/
GEO_COORD *geo; /*Output*/

int MuGeoUtm(geo, utm)
GEO_COORD *geo; /*Input*/
UTM_COORD *utm; /*Output*/

int MuUtmGeo(utm, geo)
UTM_COORD *utm; /*Input*/
GEO_COORD *geo; /*Output*/

int MuUtmMgr(utm, mgr)
UTM_COORD *utm; /*Input*/
MGR_COORD *mgr; /*Output*/

int MuMgrUtm(mgr, utm)
MGR_COORD *mgr; /*Input*/
UTM_COORD *utm; /*Output*/

Boolean MuValidMgr(mgr)
MGR_COORD *mgr; /*Input*/

Boolean MuValidUtm(utm)
UTM_COORD *utm; /*Input*/

Boolean MuValidGeo(lng, lat)

FLOAT lng; /*Input*/
FLOAT lat; /*Input*/

334

ARGUMENTS
geo A geodetic coordinate structure.

utm A universal transverse mercator (UTM) coordinate.

mgr A Military Grid Reference (MGR) coordinate.

DESCRIPTION
MuConvert utilities provide a set of routines for converting between various map
coordinate systems. The supported

systems include: Geodetic (GEO), Universal Transverse Mercator (UTM), and Military
Grid Reference (MGR). The routines perform automatic validation checking of their
inputs, and return CMNR SUCCESS if the conversion succeeds, and another status value
if it fails. Failures in the routines will also place an invalid coordinate value in the result so
that when used as inputs to other routines, failures propogate if the status is not checked.
Routines where the output is a GEO coordinate will also normalize the result so that it
falls between -180.0 and +180.0 degrees longitude, and -90.0 to +90.0 degrees latitude.

The MuValid...() routines check the validity of the input coordinate, and return True if the
coordinate is valid, and False if the coordinate is invalid.

STRUCTURES
C Interface

typedef struct _MapPoint {

double lat;
double lon;
double alt;

} MapPoint, GEO_COORD;

typedef struct utm_coord {
double easting; /*Easting offset*/
double northing; /*Northing offset*/

int sphere; /*UTM spheroid*/
int zone; /*UTM zone*/

} MapUTMPoint, UTM_COORD;

typedef struct mgr_coord {
int easting; /*Easting offset*/
int northing; /*Northing offset*/
short zone; /*MGR world zone*/

char grid_east; /*Easting grid point*/ char grid_north; /*Northing grid point*/ char
grid_alpha; /*MGR grid alpha*/ char padding[3]; /*Unused padding*/

} MapMGRPoint, MGR_COORD;

335

The GEO COORD structure is used to represent a geodetic point on the earth. All input
values are in degrees. The latitude field should lie between +84.0 degrees (north) and -
80.0 degrees (south) for conversions to either UTM or MGR, as polar regions are not
supported. The longitude field should lie between -180.0 degrees (west) and +180.0
degrees (east). Values outside this range are normalized.

The UTM COORD structure is used to represent a Universal Transverse Mercator point
on the earth. The zone field represents the 6 degree longitudinal band on the earth for

this point. It should fall between -60 and +60. Use negative values for points in the
Southern Hemisphere. The northing field must lie between 0.0 meters and 10 million
meters. The easting field must lie within the span of a zone. The spheroid field specifies
the spheroid model to use when performing transformations. The table below specifies the
models which are supported, and the corresponding constant to use:

Spheroid Model Field constant
Airy SphAiry*
Australian National SphAustralianNational
Bessel SphBessel
Clarke 1866 SphClarke1866

Clarke 1880 SphClarke1880
Everest SphEverest
International 1909 SphInternational1909
Modified Airy SphModifiedAiry*
Modified Everest SphModifiedEverest*
WGS 1972 SphWGS72

Those models marked with an asterisk are not supported for coordinate
transformations from UTM to MGR.

The macro SphGuess(model)
may be used to provide a first guess for transforming a UTM coordinate

into either an MGR coordinate or a geodetic coordinate. The transformation will revise
the guess, and provide a more accurate spheroid model for
the point if necessary, and return the actual spheroid used to the caller.

The MGR COORD structure is used to represent a Military Grid Reference
point on the earth.

The zone field represents the 6 degree longitudinal band on the earth
for this point. It should fall between +1 and +60.
Do not use negative values for points in the Southern Hemisphere.

336

The grid alpha field represents the latitude band for the point on
the earth. Valid grid values are single, upper-case, letters between delineate the 100 sq.
KM area of the earth which the point lies in. Extensive tables are searched during
transformations to insure the validity of these values. Be sure to use upper-case letters.
The easting and northing

fields are metric offsets between 0 and 99,999 from the lower left corner of the grid box.

RETURN STATUS
CMNR SUCCESS

Coordinate conversion successful - no errors.

CMNR BADMERIDIAN
Problems converting specified lat/long point to a

UTM coordinate.

CMNR BADLAT
The specified latitude point is out of range. Valid range is -80.0 to 84.0.

CMNR BADLONG
The specified longitude point is out of range. Valid range is -180.0 to
180.0.

CMNR BADUTMZONE
The specified UTM zone is invalid. Valid range is 1 to 60.

CMNR BADUTMSPHERE
The specified UTM spheroid is invalid. Valid range is -10 to +10.

CMNR NOMGRGRID
The conversion algorithms failed when trying to find an MGR grid zone for
the specified input GEO or UTM coordinate.

CMNR BADMGRZONE
The specified MGR zone is invalid. Valid range is 1 to 60.

CMNR BADMGRGRID
The specified MGR grid character is invalid. Valid range is 'A' thru 'X'.
This character must be capitalized.

CMNR BADMGRCOORD
The specified MGR coordinate is invalid, out of range, or non-existent.

CMNR BADUTMNORTH
The specified UTM northing is out of range. Valid range is 0.0 (Nautical
miles) to 10,000,000.0 Nautical miles.

337

CMNR BADUTM
The specified UTM coordinate is invalid, out of range, or non-existent.

338

MuDistance

FUNCTION
Chart Manager distance utility routines.

SYNTAX
C Interface

#include <M/Mconst.h>`
#include <M/Mtypes.h>

FLOAT MuBearing(p1, p2, gcrl)

MapPoint *p1; /*Input*/
MapPoint *p2; /*Input*/
int gcrl; /*Input*/

FLOAT MuDistance (p1, p2, gcrl) MapPoint *p1; /*Input*/
MapPoint *p2; /*Input*/
int gcrl; /*Input*/

void MuGetPosition(p1, bearing, range, gcrl, p2) MapPoint *p1; /*Input*/
FLOAT bearing; /*Input*/ FLOAT range; /*Input*/
int gcrl; /*Input*/
MapPoint *p2; /*Output*/

void MuGetRangeBearing(p1, p2, gcrl, bearing, range) MapPoint *p1; /*Input*/
MapPoint *p2; /*Input*/
int gcrl; /*Input*/

FLOAT *obearing; /*Output*/ FLOAT *orange; /*Output*/

ARGUMENTS

p1 A pointer to an input MapPoint structure which
describes a geodetic position in degrees.

p2 A pointer to an input MapPoint structure which
describes a second geodetic point in degrees.

gcrl A flag which describes the type of line formulated
between the input points. Two values are supported: GreatCircle, and
RhumbLine. GreatCircle mode traces a great circle path between two

339

points, and in fact is the shortest distance between two points. RhumbLine
mode calculates a straight line distance between two points, but may not be
the shortest distance between two points.

bearing A bearing value, in degrees, from the first input
geodetic position p1.

range A range value, in nautical miles, from the first
input geodetic position p1, to the second point.

op2 An output geodetic position, obtained by starting
from point p1, and proceeding along a bearing of bearing degrees, for a
range of range nautical miles.

obearing An output bearing value, in degrees, obtained by determining the bearing
between the input geodetic positions p1 and p2.

orange An output range value, in nautical miles, obtained
by determining the distance between the input geodetic positions p1 and
p2.

DESCRIPTION
The MuBearing() routine returns a bearing value in degrees given two input geodetic
positions points p1 and p2. The MuDistance() routine returns a distance value in nautical
miles given two input geodetic positions. The gcrl flag indicates the type of route
traversed between the two points. A value of GreatCircle will return the great circle
traversal, and is the shortest distance between two geodetic points. A value of
RhumbLine will return the linear (bearing/range) traversal distance.

The MuGetPosition() routine returns a geodetic position given an input point p1, and a
bearing and range value. The MuGetRangeBearing() routine returns a bearing and range,
given two input geodetic points p1 and p2.

RETURN
MuDistance() returns the distance between the two points in Nautical Miles. MuBearing()
returns the bearing between two points in degrees.

340

MuError

FUNCTION
Chart Manager standardized error and warning utilities.

SYNTAX
C Interface

int MuAppError(format [, arg...])
char *format; /*Input*/

int MuSysError(format [, arg...])
char *format; /*Input*/

int MuAppWarning(format [, arg...])
char *format; /*Input*/

int MuSysWarning(format [, arg...])
char *format; /*Input*/

int MuErrorHandler(channel, window, major code, minor code,
error code, error info)

Channel channel;
WindowId window;
Protocol major code;

Protocol minor code;
MapStatus error code; MapErrorCodeInformation *error info;

#include <M/MuError.h>

void MuErrorMsg(code [, arg...])
ErrorCodeType code;

void MuSetErrorList(list) ErrorCrossReference *list;

ARGUMENTS
format Any format string accepted by printf(3).

channel The connection to the Chart Manager; returned from
MOpenChannel(3C).

window The window where the error occurred.

341

major code
The major code number of the generated error.

minor code
The minor code code number of the generated error.

error code
The code number of the generated error. Error codes are described in each
Chart Manager M library manual page under the "ERRORS" heading. See
also MError(3C) for a synopsis.

error info
Additional information specified with some errors (specifically map related
errors). See MError(3C) and MChangeMap(3Map).

code A special error code designator. Some error code
designators have one to one correspondence with error status codes
returned by the Chart Manager. Additional error codes are defined within
the Mu library to specify additional commonly occuring errors. The
programmer can also define an additional set of error codes. The core set
of codes defined by the Mu library is described in the VALUES section of
this manual page.

list A cross reference list containing error codes and
error messages. The core set of error codes is described in the VALUES
section of this manual page. The programmer can also specify an addi-
tional set of error codes for a program.

class The classification of an error code. Allowed
values are: WARNING, ERROR, SEVERE, FATAL, INFOR MATION,
CONSOLE MSG, and SUCCESS.

DESCRIPTION
The Mu library provides a rather extensive set of error processing routines principally
designed to provide Chart Clients with a consistent means of handling errors which
originate from requests to the Chart Manager. As a secondary feature, additionally error
support is provided for exceptions which commonly occur (such as file access problems,
improperly entered data, etc).

The routines MuAppError(), MuAppWarning(), MuSysError(), and MuSysWarning() are
simply routines which process client errors, warnings, system errors, and system warnings
in a consistent manner.

The MuErrorHandler() routine is a Chart Client error handler routine which can serve as
an input to MSetErrorHandler(3Map).This Chart Manager error codes, in particular the

342

rather involved codes returned by geographic display-related requests.
The MuErrorMsg() routine interprets both Chart Client

MapStatus codes, and additional error codes to provide a core set of error support to a
Chart Client. The VALUES section below describes the error codes supported by the Mu
library. The Chart Client can define additional error codes using the MuSetErrorList()
call. The ErrorCodeType value associates both an error status code, and an error class
into one value. The class allows the Mu library to process errors in distinct classes
differently. For example, FATAL errors result in the Chart Client process being
terminated, whereas INFORMATION messages allow the Chart Client to continue
processing.

All Mu library error processing calls the program $PROGS/Warning, if it exists. This
results in a formatted message being displayed in a X Window. If the Warning utility is
not found the message is printed to stderr. Extra long messages are automatically broken
up onto separate lines, although carriage returns using \n are recognized inside of error
messages.

MuAppError() prints out the specified message, preceded by the string "Error - ".
MuAppWarning() prints out the specified message, preceded by the string "Warning - ".

MuSysError() prints out the specified message, preceded by the string "Error - ", and
followed by the system error message set by errno (see intro(3)). MuSysWarning() works
similarly, except that the specified message is preceded by the string "Warning - ".

RETURN
MuAppError(), MuAppWarning(), MuSysError(), and MuSysWarn ing() return -1 if the
call fails. Otherwise the number of arguments which were printed out as part of the
message is returned.

MuErrorHandler() returns 0 if the error was processed, and -1 otherwise. When invoked
using the MSetErrorHandler() call this allows for default processing of error codes not
processed by MuErrorHandler().

STRUCTURES
C Interface

typedef int ErrorCodeType;
typedef struct {

ErrorCodeType code;
char *string;

} ErrorCrossReference;

An ErrorCodeType value consists of both an error code value and an error class value.

343

These values are bitwise OR'd together to form the ErrorCodeType. Valid error codes
defined by the Mu library are described in the VALUES section of this manual page.
When defining your own error codes, follow the syntax shown in the file MuError.h. Bear
in mind that code values between 0x0000 and 0x1fff are reserved by the Mu library.

The ErrorCrossReference structure is used to define additional Chart Client error codes.
The structure consists of simply an ErrorCodeType value, and a corresponding error
message. The error message should be in the format suitable for printf(3).When
MuErrorMsg() is invoked with the Error CodeType value set to this error code, then
sufficient arguments should be included to fill in any values in the error message string.

VALUES
The following error code values are recognized by the MuEr rorMsg routine. For the
specific error messages, refer to the file MuError.h.

Error code value Default error classParameters
MErrAmbKey ERROR Key word (%s)

MErrBadCoord ERROR Geodetic coordinate specified (%s)
MErrBadNumber ERROR Specified number (%s)
MErrBadVersion SEVERE Filename(%s), version(%f), running

version(%f)
MerrBogusValue INFORMATION Value name(%s), value (%d)
MErrCValueRange ERROR Name(%s),value(%s),lower range(%c),upper

range(%c)
MErrDValueRange ERROR Name(%s),value(%s),lower

range(%d),upper range(%d)
MErrEndOfFile WARNING Filename(%s)

MErrFileOpen ERROR Filename(%s)
MErrFileRead ERROR Bytes expected to read(%d), bytes read(%d)
MErrFileWrite ERROR Bytes expected to write(%d), bytes

written(%d)

MErrFValueRange ERROR Value name(%s), value(%s), lower
range(%f), upper range(%f)

MErrGeneral ERROR Any error message. Parameters vary.
MErrIllKey ERROR Key word (%s)
MErrNameExists ERROR Value name (%s), Key word (%s)

MErrNoEnvDef ERROR Environment variable(%s)
MErrNoMaps WARNING Map search path (%s)
MErrNoName ERROR None
MErrNoSuchName ERROR Value name (%s), key word (%s)

344

MErrPrintFail ERROR Job name (%s), printer name (%s)
MErrPrinted SUCCESS Job name (%s), printer name (%s)
MErrRecDeleted SUCCESS Key word (%s)

MErrRecNoDelete ERROR Key word (%s)
MErrSelectNone ERROR None
MErrSelectOne ERROR None

MErrXValueRange ERROR Name(%s),value(%s),lower
range(%x),upper range(%x)

MerrNoSuchMsg SEVERE Undefined message code (reserved)
The following error codes correspond directly to status

codes received from the Chart Manager. All of these codes expect three parameters: a
string which says "Map Product" or "Feature Product", the product type string, and the
projection string. Note: all other MapStatus codes result in the MErrNoSuchMsg error
message being printed.

Error code value Default error class
AlreadyDrawingMap INFORMATION
BadMapEntry ERROR
BadServer CONSOLE MSG

BadValueError CONSOLE MSG
ErrorDrawingFeature WARNING
ErrorDrawingMap WARNING
FeatureNotAvailable INFORMATION
FeatureNotSupported ERROR
MapDrawAborted INFORMATION
MapTooSmall CONSOLE MSG
MaxExtents CONSOLE MSG
MaxScale ERROR
MinScale ERROR
NoMapsDrawn INFORMATION
ProductNotFound WARNING
ProjectionNotSupported ERROR
SystemNotSupported ERROR
TooManyMaps WARNING
UnresponsiveDrawModule WARNING
WorldFitProblem CONSOLE MSG

The following error classes are recognized by the MuEr

345

rorMsg() call.

Error class value Chart Client action

CONSOLE_MSG Prints a message and continue processing
ERROR Pause until user confirms reading error message
FATAL Terminate Chart Client
INFORMATION Continue
SEVERE Pause until user confirms reading error message
SUCCESS Continue
WARNING Continue

EXAMPLES
#define CClientBadMGRCoord (0x2000 | ERROR)

#define CClientBadUTMCoord (0x2001 | ERROR) ErrorCrossReference ref[] = {

{CClientBadMGRCoord, "The value %s is an improperly formatted MGR
coordinate"}, {CClientBadUTMCoord, "The value %s is an improperly formatted
UTM coordinate"}, {0, NULL}};

MuSetErrorList (ref);
MSetErrorHandler (MuErrorHandler);
MuErrorMsg (MErrFileOpen, "myfile.dat");
MuErrorMsg (MErrGeneral, "Please specify a file name other than %s", filename);
MuErrorMsg (CClientBadMGRCoord, mgr_string);
MuAppError ("Do not specify %s for a map name!", map_name);

ENVIRONMENT
PROGS

Location of Chart Manager executables.
FILES

Warning
If this file is present, then a warning window will be

produced. Otherwise, the message is printed to stderr. For the CONSOLE MSG
error class, the message is always printed to stderr.

SEE ALSO
MError(3C), MuInit(3Mu), stdio(3), printf(3V)

346

MuFont

FUNCTION
Convenvience routines for accessing predefined NTDS fonts.

SYNTAX
C Interface

char *MuPointSizeToFontName(size)
int size;

int MuPointSizeToWidth(size)
int size;

ARGUMENTS
size The constant point size name for the font, e.g.

Small.

DESCRIPTION
These routines return specific information about the predefined NTDS fonts.
MuPointSizeToFontName() returns the name of the font representing the specified point
size. The string returned should not be modified. MuPointSizeToWidth() returns the
width in pixels of the specified font.

RETURN
MuPointSizeToFontName() returns the full X window font specification given the input
size. This string value is statically assigned, and should NOT be freed using MFree. The
value NULL is returned if the input size is invalid. MuPointSizeToWidth() returns the
width of each symbol in the specified font (in pixels). The value 0 is returned if the input
size is invalid.

SEE ALSO
MDrawSymbol(3C)

347

MuGeoPosn

FUNCTION
Chart Manager geo reference position string utility routines.

SYNTAX
C Interface

void MuGeoToString(string, longitiude, latitude) char *string; /*Output*/

FLOAT longitude; /*Input*/
FLOAT latitude; /*Input*/

int MuStringToGeo(string, latitude, longitude) char *string; /*Input*/
FLOAT *latitude; /*Output*/

FLOAT *longitude; /*Output*/

ARGUMENTS
string The string representation of a geodetic reference

point. The format of this string is:

<clon><clat> [<sslon> [<sslat>]]

where
<clon> is a 2 character longitude grid value <clat> is a 2 character
latitude grid value <sslon> is a 2 digit longitude seconds value (0 to
59)
<sslat> is a 2 digit latitude seconds value (0 to 59)

latitude The latitude value in degrees.

longitude The longitude value in degrees.

DESCRIPTION
The MuGeoPosn routines provide conversions from geodetic values to a printable string,
and vice-versa. The format of the string is in the geo-reference grid format, which divides
the world into 24 latitude and 24 longitude bands, with character designations for each
band. Each band in turn is subdivided into 24 sub-bands, and an optional seconds field for
additional precision.

The routine MuGeoToString() returns a string representation of the input position. The
parameter string must be large enough to accept the output (at least 9 characters). The
input coordinate is normalized to always fall between -180.0 and 180.0 degrees longitude,
and -90.0 to 90.0 degrees latitude. Invalid inputs will result in a string of asterisks.

348

The routine MuStringToGeo() parses the input string and
returns a latitude value and a longitude value if the

position string is valid.
RETURN

MuStringToGeo() returns the value CMNR SUCCESS if the conversion is successful, and
returns CMNR BADFORMAT if the conversion fails. In the event of failure, the
returned coordinate is set to (+infinity, +infinity).

349

MuInit

FUNCTION
Chart Client Initialization Functions.

SYNTAX
C Interface

#include <X11/Xlib.h>
#include <M/Mlib.h>
#include <M/Qualifiers.h>
#include <M/Mu.h>
#include <M/MuInit.h>

int MuInitialize(argc, argv, inatts, inmask, outatts) int argc; /*Input*/
char **argv; /*Input*/
ClientInputAttributes *inatts; /*Input*/ MapValueMask inmask;
/*Input*/ ClientOutputAttributes *outatts; /*Output*/

void MuTerminate()

ARGUMENTS
argc A count of the number of arguments passed to the

Chart Client when the command is invoked.

argv The NULL terminated list of command line argu-
ments.

inatts A structure which describes special initialization
attributes over and above the default attributes used to initialize the Chart
Client's connection to the Chart Manager.

inmask A bit mask which indicates those fields in inatts
which are being specified. Those fields not specified imply certain default
actions.

outatts A structure containing key fields and values for
communicating with the Chart Manager, and to a connected window.

SEE ALSO
MAddInput(3Map), MAddTimeOut(3Map), MError(3C), MEventMask(3C),
MMainLoop(3Map), MOpenChannel(3C), MSetEventHandler(3Map),
MUseNamedWindow(3C), MUseWindow(3C), MuError(3Mu), MuOption(3Mu),
XOpenDisplay(3X11), execv(3), signal(3)

350

MuMgrPosn

FUNCTION
Chart Manager MGR position string utility routines.

SYNTAX
C Interface

void MuMgrToString (string, mgr)

char *string; /*Output*/ MGR_COORD *mgr; /*Input*/

int MuStringToMgr (string, mgr) char *string; /*Input*/ MGR_COORD
*mgr; /*Output*/

ARGUMENTS

string The string representation of a Military Grid
Reference System (MGRS) position. The syntax of this string is:

<zone> <alpha> <grid-east><grid-north>[]<easting>[-]<northing>

where
<zone> is the Universal Transverse Mercator (UTM) zone.
<alpha> is the UTM grid alpha character. <grid-east> is the MGRS
easting grid location character.
<grid-north> is the MGRS northing grid location character.
<easting> is the MGRS easting offset value in meters. Valid range
is between 0 and 99999 in increments of 1 meter.
<northing> is the MGRS northing offset value in meters. Valid
range is between 0 and 99999 in increments of 1 meter.

mgr The MGRS coordinate record.

DESCRIPTION
The MuMgrPosn routines provide conversions from MGR COORD records to a printable
string, and vice-versa. The routine MuMgrToString() returns a string representation of
the input position. The parameter string must be large enough to accept the output (at
least 19 characters).

The routine MuStringToMgr() parses the input string and returns an MGRS record value
if the position string is valid. The MuStringToMgr() routine calls MuMgrGeo() to validate
the input position. An invalid MGR coordinate is guaranteed to be returned if the
MuStringToMgr() call fails.

Likewise, an invalid MGR coordinate will return an asterisk string in the

351

MuMgrToString() call.

RETURN
The MuStringToMgr() routine returns the value CMNR SUCCESS if the conversion is
successful, and returns one of a number of possible error codes if the conversion fails.
The error codes are explained in detail in the MuConvert(3Mu) manual page.

SEE ALSO
MuConvert(3Mu)

352

MuOption

FUNCTION
Chart Manager option parsing routines.

SYNTAX
C Interface

#include <M/Qualifiers.h>
int MuQualGetOption(options, args, count,

extra values)
Qualifiers *options; /*Input*/

char **args; /*Input*/ int *count; /*Output*/
char ***extra values; /*Output*/

char *MuQualGetPgmName()

void MuQualUsage(name, options)

char *name; /*Input*/
Qualifiers *options; /*Input*/

ARGUMENTS
options A pointer to a list of Qualifiers structures.

Each record describes a supported option for this command, and indicates
whether a parameter follows.

args A pointer to a list of strings which specify the
list of input arguments. This list must be terminated by a NULL pointing
string.

count A modifiable offset, initially set to the offset
into the string list where parsing should begin, and modified by the
MuQualGetOption() routine as options get parsed.

extra values
A pointer to a list of command lines values which are not tied to an option.
These values will always follow all options on the line, and allow command
syntax such as "command -option <value> <file1> <file2> ...".

name The command name, in string format.

DESCRIPTION
The MuQualGetOption() routine returns the next matching option in the command line.

353

Options are specified using a list of Qualifiers records, each of which contains the option
value, and a modifier. The Qualifiers structure is described in the STRUCTURES section
below.

This routine returns -1 whenever an error occurs during parsing. When an option matches,
the index of the matching option is returned. When an extra parameter is encountered,
MuQualGetOption() returns the value of the highest matching option index, plus 1. When
all arguments have been checked, the routine returns -2. At most one parameter is
supported per option.

The MuQualGetOption() routine should be called successively until the value -2 is
returned, which means that there are no more options to be parsed. When an option is
successfully parsed, the index of the option is returned by this routine, and the option's
value (if any) is placed in the specified address field in the Qualifiers structure. If no more
options exist on the line, but additional command line values do exist, then the value equal
to the number of Qual ifiers records + 1, is returned, and the parameter
extra values is set to the address of the first argv containing the command line values. In
the event that -1 is returned, the caller should most likely print out the command syntax,
using MuQualUsage(), and exit. When errors occur, MuQualGetOption() generally prints
out an explanation as to the cause.

The MuQualGetPgmName() routine conveniently removes any preceding path name from
a command line. Generally speaking, the input to this routine should be the value argv[0].

The MuQualUsage() routine conveniently prints out the syntax for the given command.
This routine requires the command name, as well as a list of Qualifiers structures.

RETURN
The MuQualGetPgmName() routine returns a character string containing the name of the
executable. This value is statically assigned and should NOT be freed using
MFree(3Map).

The MuQualGetOption() routine returns the index of the next option on the command
line. The value -1 is returned whenever an invalid option, or other parsing error occurs.
The value -2 is returned after the entire command line has been checked.

STRUCTURES
C Interface

typedef enum {
PARAMETER, OPTIONAL_PARAMETER, NOPARAMETER

} ParmRequirements;

typedef struct {
char *option;

354

ParmRequirements optiontype;
char **value;

} Qualifiers;

The fields for the Qualifiers structure are defined as follows:

option
A pointer to a string representing the option.

optiontype
The syntax supported. The value PARAMETER means that a parameter is
required, and follows. The value NOPARAM ETER means that no parameter is
required. The value OPTIONAL PARAMETER means that a parameter may
follow, but is not required. In this case, a parameter is not parsed if the next item
specified is an option, or else is NULL.

value
An address to place an option's value. This should be an address of a pointer to a string.
Since the returned value is one of the argv's, it does not need to allocate space for a string,
since argv pointers are globally defined. This value applicable only if optiontype is set to
PARAMETER.

355

MuPosition

FUNCTION
Chart Manager geodetic position string utility routines.

SYNTAX
C Interface

void MuPositionToString(string, longitude, latitude, format)
char *string; /*Output*/

FLOAT longitude; /*Input*/ FLOAT latitude; /*Input*/ int format;

int MuStringToPosition(string, longitude, latitude) char *string; /*Input*/

FLOAT *longitude; /*Output*/
FLOAT *latitude; /*Output*/

ARGUMENTS
string The string representation of a latitude/longitude

combination. In the routine MuStringToPosition(), the format of this
string is:

<dd>:[<mm>:[<ss>]][EWNS] <ddd>:[<mm>:[<ss>]][EWNS]

where
<dd> is the whole number of degrees.

<mm> is the number of minutes (0 to 59). <ss> is the number of
seconds (0 to 59).

[NS] is the latitude hemisphere (N: Northern, S: Southern).
[EW] is the longitude hemisphere (E: Eastern, W: Western).

DESCRIPTION
The MuPosition routines provide conversions from geodetic values to a printable string,
and vice-versa. The routine MuPositionToString() returns a string representation of the
input position. The parameter string must be large enough to accept the output (at least
20 characters). The input latitude is normalized to fall between -90 and +90 degrees, and
the input longitude is normalized to fall between -180 and +180 degrees. An invalid input
position will result in a formatted asterisk string.

The routine MuStringToPosition() parses the input string and returns a latitude value and
a longitude value if the position string is valid. In the event of an error, MuStringTo
Position() returns a coordinate value of (+infinity, +infin ity).

356

RETURN
The MuStringToPosition() routine returns the value

CMNR SUCCESS if the conversion is successful, and returns
one of the following values if the conversion fails:
CMNR BADFORMAT, CMNR BADLAT, or CMNR BADLONG.

SEE ALSO
MuConvert(3Mu), MuMgrPosn(3Mu), MuUtmPosn(3Mu)

BUGS
The MuPositionToString() routine should accept a string format and length as parameters.
This would make the routine more general purpose. The MuStringToPosition() should
also accept a format string for parsing the input location string.

357

MuReference

FUNCTION
Chart Manager category reference routines. Most of these functions operate on
MapReference lists, which are first retrieved using "List" functions. For example,
MuListTypes returns a pointer to a list of type MapReference and the size of the list is
returned via the argument list. Subsequently, the list and its size may be used in to call
functions such as MuStringToType.

SYNTAX
C Interface

MapReference *MuListTypes(listsize)

int *listsize;
MapType MuStringToType(string, list, size) char *string;

MapReference *list;
int size;

char *MuTypeToAcronym(value, list, size) unsigned int value;

MapReference *list;
int size;

char *MuTypeToString(value, list, size) unsigned int value;
MapReference *list;
int size;

int MuAddType(record)

MapReference *record;

unsigned int MuStringToSubType(string, list, size) char *string;
MapReference *list;
int size;

char *MuSubTypeToAcronym(value, filter, list, size) unsigned int value;

unsigned int filter;
MapReference *list;
int list;

char *MuSubTypeToString(value, filter, list, size) unsigned int value;

358

unsigned int filter;
MapReference *list;
int size;

MapStatus MuAddSubType(record)

MapReference *record;
MapReference *MuListSubTypes(filter, size)

unsigned int filter;
int *size;

unsigned int MuStringToProjection(string, list, size) char *string;
MapReference *list;
int size;

char *MuProjectionToAcronym(value, list, size)
unsigned int category;

MapReference *list;
int size;

char *MuProjectionToString(value, list, size) unsigned int value;
MapReference *list;
int size;

int MuAddProjection(record)
MapReference *record;

MapReference *MuListProjections(listsize)
int *listsize;

unsigned int MuStringToFeature(string, list, size) char *string;
MapReference *list;
int size;

char *MuFeatureToAcronym(value, list, size) unsigned int value;

MapReference *list;
int size;

char *MuFeatureToString(value, list, size) unsigned int value;
MapReference *list;
int size;

int MuAddFeature(record)

359

MapReference *record;

MapReference *MuListFeatures(listsize)
int *listsize;

unsigned int MuStringToSubFeature(string, list, size)

char *string;
MapReference *list;
int size;

char *MuSubFeatureToAcronym(value, filter, list, size) unsigned int value;

unsigned int filter;
MapReference *list;
int size;

char *MuSubFeatureToString(value, filter, list, size) unsigned int value;
unsigned int filter;

MapReference *list;
int size;

int MuAddSubFeature(record)
MapReference *record;

MapReference *MuListSubFeatures(filter, size)
unsigned int filter;
int *size;

ARGUMENTS
string A valid string representation of the particular

category. The string can be all or part of a category's string representation,
acronym representation, or a combination of both representations. In the
latter case, the accepted format is "string (acronym)". The input string
must be long enough to unambiguously delineate a unique category.
Otherwise the category UnknownValue is returned.

category The internal representation for the particular
category.

type An internal representation for a particular

360

category. See DESCRIPTION section below for more information.

list The cross reference list for a particular cross
reference item. Returned by the corresponding MuList... call for that item.

size The size of the cross reference list. Returned as
a parameter by the corresponding MuList... call.

record A MapReference record which contains information
for adding a record to one of the supported cross reference lists.

listsize A parameter returned by the MuList...() calls which represents the size of the
returned MapReference list.

DESCRIPTION
The Chart Manager categorizes certain items which need to be unique, and internally
represented as integers, and provides services to convert between their internal
representation and an external (string) representation. The items which fall under this
method include: MapType, MapSubType, Pro jectionType, FeatureType and
FeatureSubType. These items normally use their internal representation for
communication with the Chart Manager (for example, see MProdAtts(3Map)).

Categories can be externally represented either as a string, or as an acronym. The
Mu....ToString() routines provide a string representation for the internal category id. The
Mu....ToAcronym() routines provide an acronym representation for the internal category
id. Both routines return pointers to allocated character strings. C programmers should
free these strings using MFree. If an error occurs while retrieving the references, NULL is
returned.

The MuStringTo....() routines provide a mechanism for converting an external string
representation for a category to its unique internal representation. The returned value can
then be used in the appropriate fields in records sent to the Chart Manager. These strings
can be either the string or acronym representation for an item in a category. You need to
provide only enough of the string to uniquely distinguish the item from other items in the
category. The format "string (acronym)" is also accepted. If the string match fails to
match any item in the category, or if the matching algorithm detects an ambiguity, then the
value Unk nownValue is returned. Otherwise, the internal id for that item is returned.

The MuAdd...() routines enable the calling module to add the indicated value to the value
list. If the value already is present on the list, it will not be added again. Since the caller
must have write access to certain files, those files may have their protection set to disable
this capability.

The MuList....() routines return a list of structures for all items in a category. Each record
in the MapReference list contains an internal representation, a string representation, and an

361

acronym representation. The list size is returned in the listsize parameter. When done
with the list, C users must free it via a call to MFree.

The MuSubType...() and MuSubFeature...() routines require an additional parameter, the
type. Map subtypes are

categorized by MapType, and must be referenced as such.
When type is set to AnyMap, then this subtype is valid for all map classes (in the case of
MuAddSubType()), and refers to the first entry of this type for the other subtype routines.

Similarly, feature subtypes are categorized by FeatureType, and must be referenced as
such. When type is set to Any Feature, then this subtype is valid for all feature classes (in
the case of MuAddSubFeature()), and refers to the first entry of this type for other
subfeature routines.

RETURN
The Mu...ToString() and Mu...ToAcronym() routines return a pointer to a string which
must be freed using MFree. Likewise, the MuList...() routines return a pointer to a list of
MapReference structures, which must be freed using MFree.

The MuStringTo...() routines return an internally encoded integer value which uniquely
represents the string. The value UnknownValue is returned in cases where the the match-
ing algorithm fails. The MuAdd...() routines return NoError on success, and an error
status indicating the cause of failure otherwise.

STRUCTURES
C Interface

typedef struct _MReference {
union {

unsigned int internal;
char code[4];

} value;
char name[TYPE_LENGTH+1];

char acronym[ACRONYM_LENGTH+1];
unsigned int typevalue;

} MapReference;

FILES
${MapClassPath}/MapType.xrf

The cross reference file for the MapType category.

${MapClassPath}/MapSubType.xrf
The cross reference file for the MapSubType category.

${MapClassPath}/MapProjection.xrf
The cross reference file for the ProjectionType

362

category.
${MapClassPath}/MapFeatures.xrf

The cross reference file for the FeatureType category.

${MapClassPath}/MapSubFeatures.xrf
The cross reference file for the FeatureSubType category.

ENVIRONMENT
MapClassPath

This path specifies the location of Chart Manager cross reference files. It must be
defined in order to use the MuReference() routines.

ERRORS
Returned by the MuAdd...() routines:

BadValueError
A supplied address pointer is invalid.

BadRecord
The cross reference file contains a bad or illegally formatted record.

NoEnvironment
The environment variable "MapClassPath" is not defined.

NoSuchFile
One of the above named files does not exist.

SEE ALSO
MError(3C), MFeatAtts(3Map), MProdAtts(3Map)

363

MuUnits

FUNCTION
Chart Manager units conversion macros.

SYNTAX
C Interface

#include<M/MuUnits.h>

FLOAT DegreesToRadians(arg)
FLOAT RadiansToDegrees(arg)
FLOAT NauticalToMeters(arg)
FLOAT NauticalToKilometers(arg)
FLOAT NauticalToMiles(arg)
FLOAT NauticalToDegrees(arg)
FLOAT MetersToNautical(arg)
FLOAT MetersToFeet(arg)
FLOAT KilometersToNautical(arg)
FLOAT KilometersToMiles(arg)
FLOAT FeetToMeters(arg)
FLOAT MilesToNautical(arg))
FLOAT MilesToKilometers(arg)
FLOAT MilesToMeters(arg)

ARGUMENTS
arg The argument passed is cast to a FLOAT so that any

scalar value will be accepted.

DESCRIPTION
MuUnits utilities provide a set of standard conversion routines for converting units.

RETURN STATUS
All arguments are returned as a FLOAT.

364

MuUtmPosn

FUNCTION
Chart Manager UTM position string utility routines.

SYNTAX
C Interface

void MuUtmToString (string, utm, format)
char *string; /*Output*/

UTM_COORD *utm; /*Input*/ int format; /*Input*/

int MuStringToUtm (string, utm) char *string; /*Input*/ UTM_COORD
*utm; /*Output*/

ARGUMENTS

string The string representation of a civilian Universal
Transverse Mercator (UTM) formatted position. The syntax of this string
is:

<zone>[,][<spheroid>][,]<northing>[,]<easting>

where
<zone> is the Universal Transverse Mercator (UTM) zone.
<spheroid> is the UTM spheroid. This field is optional, and the
resultant spheroid will be returned from the other information if it is
not supplied. If no spheroid is to be supplied, do not include
commas.
<easting> is the absolute easting in meters. This is a floating point
value.

<northing> is the absolute northing in meters. This is also a
floating point value.

utm The UTM coordinate record.

format The format for the printed string. Valid values
are: UtmNoSpheroid and UtmPlusSpheroid.

DESCRIPTION
The MuUtmPosn routines provide conversions from UTM values to a printable string, and
vice-versa. The routine MuUtmTo String() returns a string representation of the input
position. The parameter string must be large enough to accept the output (at least 25
characters). Two formats are supported: UtmNoSpheroid and UtmPlusSpheroid. If

365

UtmNoS pheroid format is requested, then the UTM position is printed out without the
spheroid value used in the transformation. If UtmPlusSpheroid format is requested, then
the spheroid used in the transformation is printed out after the

zone.
The routine MuStringToUtm() parses the input string and returns a UTM COORD record
value if the position string is valid. This routine returns the value CMNR SUCCESS if the
conversion is successful, and returns one of a number of possible error codes if the
conversion fails. The error codes are explained in detail in the MuConvert(3Mu) manual
page. The MuStringToUtm() routine calls MuUtmGeo() to validate the parsed position.
The MuStringToUtm() call is guaranteed to return an invalid UTM coordinate if the call
fails for some reason. Likewise, the MuUtmToString() call will return asterisks if the
input UTM coordinate is invalid.

SEE ALSO
MuConvert(3Mu)

NOTES
Both routines should be able to support user defined format strings. This would
circumvent the need to define and support a new format each time one is required.

